Kolhapur Institute of Technology's College of Engineering, Kolhapur

Curriculum (Structure)

for

Mechanical Engineering Programme (Under Graduate Programme)From Academic Year 2019-2020

T.Y.B.TECH SYLLABI

Protessor Protessor DEPARTMENT OF ELECTRONICS ENGG, KITS Goliege of Engineering, COLHAPUR 416234

Dr. U. S. Bhapkar Head Department of Mechanical Engg-Kolhapur Institute of Technology's College of Engineering (Autonomous) Kolhapur

KOLMAPUR INSTITUTE OF TECHNOLOGY'S COLLEGE OF ENGINEERING KOLHAPUR

Kolhapur Institute of Technology's College of Engineering, Kolhapur

Teaching and Evaluation scheme for

Second Year B. Tech. Programme in Mechanical Engineering Semester – III

		т	eaching	a Schei	ne	Evalu	ation Sc	heme	
Course	Course		(Hrs/	Week)	ne	Component		Marks	
Coue	Ivanie	L	Т	Р	С	Component	Max	M pas	lin sing
	Engineering Mathematics- III	3	1	-	4	ISE- I	10		
						MSE	30		40
UNICHUSUI						ISE-II	10		40
						ESE	50	20	
	Engineering	3	-	-	3	ISE- I	10		
UMCH0302	Thermodynamics					MSE	30		40
						ISE-II	10		40
						ESE	50	20	
	Fluid Mechanics	3	-	-	3	ISE- I	10		
UMCH0303						MSE	30		40
						ISE-II	10		40
						ESE	50	20	
		3	-	-	3	ISE- I	10		
UMCH0304	Manufacturing Processes					MSE	30		40
						ISE-II	10		40
						ESE	50	20	
	Machine Drawing and	3	1	-	4	ISE- I	10		
UMCH0305	Computer Aided Drafting					MSE	30		40
						ISE-II	10		40
						ESE	50	20	
UMCH361	Electrical Technology (Audit Course)	2	-	-	0	ESE	100		40
UMCH0330	Object oriented	-		2	1	ISE	25	10	
	Programming Lab								
UMCH0331	Machine Drawing Lab	-		2	1	ISE	25	10	
						ESE(POE)	25	10	
UMCH0332	Thermal Engineering Lab	-		2	1	ISE	25	10	
						ESE(OE)	25	10	
UMCH0333	Fluid Mechanics Lab	-	-	2	1	ISE	25	10	
						ESE(POE)	25	10	
UMCH0334	Workshop Practice II	-	-	2	1	ISE	25	10	
<u> </u>	Total	22		I		I			
		Cont	act Hou	irs/We	ek :	Total : 800			
			2	9 Hrs					

Note: ESE: End Semester Examination, MSE: Mid Semester Examination, ISE: In Semester Evaluation.

KOLHAVIE NISTITUTE COLLEGE OF ENGINEERING MUTOMOUSE KOLHAPUR

Kolhapur Institute of Technology's College of Engineering, Kolhapur

Teaching and Evaluation scheme for Second Year B. Tech. Programme in Mechanical Engineering Semester – IV

		Т	eachir	ng Sche	eme		Evaluat	tion Sch	eme				
Course	Course Name		(Hrs	/Week)			N	Iarks				
Code	Course runne	L	Т	Р	С	Co	mponent	Max	Mir Pas	ı for sing			
							ISE- I	10					
UMCH0401	Analysis of Mechanical	2	1		4		MSE	30		40			
	Elements	3	1	-	4		ISE-II	10		40			
							ESE	50	20				
							ISE- I	10					
UMCH0402	Mashina Taala	2	1		4		MSE	30		40			
	Machine Tools	3	1	-	4		ISE-II	10		40			
							ESE	50	20				
							ISE- I	10					
UMCH0403	Kinematics of Machines	2			2		MSE	30		40			
		3	-	-	3		ISE-II	10		40			
							ESE	50	20				
										ISE- I	10		
UMCH0404	Track - Mashing	2			2		MSE	30		40			
	Turbo Machines	3	-	-	3		ISE-II	10					
							ESE	50	20				
							ISE- I	10					
UMCH0405	Metallurgy	2			2		MSE	30		40			
		3	-	-	3		ISE-II	10		40			
							ESE	50	20				
UMCH461	Environmental Studies (Audit Course)	2	-	-	0		ESE	100		40			
UMCH0431	Workshop Prestice III			2	1		ISE	25	10				
	workshop Practice III	-	-	Z	1	ES	SE (POE)	25	10				
UMCH0432	Kinematics of Machines Lab	-	-	2	1		ISE	25	10				
UMCH0433	Turbo Machines Lab	-	-	2	1		ISE	25	10				
UMCH0434	Computer Craphics Lab			2	1		ISE	25	10				
	Computer Graphics Lab	-	-	2	1	E	SE(POE)	25	10				
UMCH0435	Matallyngy Lab			2	1		ISE	25	10				
	Metanurgy Lab	-	-	Z	1	E	SE(OE)	25	10				
		17	2	10	22								
	Total	Con	itact H 29	lours/V) Hrs	Veek:		То	tal: 800					

Note: ESE: End Semester Examination, MSE: Mid Semester Examination, ISE: In Semester Evaluation.

Protessor SEPARTMENT OF ELECTRONICS ENGG. KITS College of Engineering,

Dr. U. S. Bhapkar Head Tread Department of Mechanical Engg Kolhapur Institute of Technology College of Engineering (Autonomo Kolhapur

Kolhapur Institute of Technology's College of Engineering, Kolhapur

Teaching and Evaluation scheme for

Third Year B.Tech. Programme in Mechanical Engineering - Semester V

		Та			homo	Evaluation Scheme					
Course	Course Name	Tea	(Hrs	lg Sc. /Wee	neme k)	Component	Marks				
Coue		L	Т	Р	С	Component	Max	M P	lin For assing		
UMCH0501	Metrology and	3	-	-	3	ISE- I	10				
	Quality Control					MSE	30		40		
						ISE-II	10		40		
						ESE	50	20			
UMCH0502	Heat Transfer	3	-	-	3	ISE- I	10				
						MSE	30		40		
						ISE-II	10		40		
						ESE	50	20			
UMCH0503	Dynamics of	3		-	3	ISE- I	10				
	Machines					MSE	30		10		
						ISE-II	10		40		
					ESE	50	20				
UMCH0504	Design of	3	1	-	4	ISE- I	10				
	Machine					MSE	30		40		
	Elements					ISE-II	10		40		
						ESE	50	20			
UMCH0505	Manufacturing	3	1	-	4	ISE- I	10				
	Engineering					MSE	30		10		
						ISE-II	10		40		
						ESE	50	20			
	Control	3	-	-	0	ESE	100		40		
UMCH0561	Engineering										
	(Audit Course)										
UMCH0531	CAD/CAM Lab	-	-	2	1	ISE	25	10			
						ESE(POE)	25	10			
UMCH0532	Measurement	-	-	2	1	ISE	25	10			
	Lab										
UMCH0533	Heat Transfer	-	-	2	1	ISE	25	10			
	Lab					ESE(POE)	25	10			
UMCH0534	Dynamics of	-	-	2	1	ISE	25	10			
	Machines Lab.					ESE(OE)	25	10			
UMCH0541	Metrology and	-	-	2	1	ISE	25	10			
	Quality Control										
	Total	18	2	10	22						
Contact Hours/Week					Week:	- Total : 800					
			30	Hrs							

Note: ESE: End Semester Examination, MSE: Mid Semester Examination, ISE: In Semester Evaluation

Kolhapur Institute of Technology's College of Engineering, Kolhapur

Teaching and Evaluation scheme for

Third Year B.Tech. Programme in Mechanical Engineering - Semester VI

		Tea	achin	g Scl	neme		Evaluation Scheme				
Codo	Course Nome		(Hrs/	Wee	k)	[Mar	·ks	
Code	Course Maine	т	т	D	C		Component	Mov	N	1in For	
		L	1	Г	C			wax	I	Passing	
		3	-	-	3		ISE- I	10			
	Machine Design						MSE	30		40	
UMCH0601							ISE-II	10		40	
							ESE	50	20		
	Industrial	3	-	-	3	1 [ISE- I	10			
	Hydraulics and					[MSE	30		40	
UMCH0602	Pneumatics						ISE-II	10		40	
						[ESE	50	20		
	Internal	3	-	-	3	1 [ISE- I	10			
	Combustion					[MSE	30		40	
UMCH0603	Engines					[ISE-II	10		40	
						[ESE	50	20		
	Professional	3	1	-	4] [ISE- I	10			
UMCH0621*	Elective – I						MSE	30		40	
							ISE-II	10		40	
							ESE	50	20		
	Open Elective- I	3	1	-	4		ISE- I	10			
UMCH0671#							MSE	30			
							ISE-II	10			
							ESE	50	20	40	
	Process	2	-	-	0		ESE	100		40	
UMCH661	Engineering (Audit										
	Course)										
UMCH0631	Workshop Practice	-	-	2	1		ISE	50	20		
	IV						ESE(POE)	25	10		
	Industrial			2	1		ISE	25	10		
01/01/01/00/052	Hydraulics and										
	Pneumatics Lab										
UMCH0634	I C Engines Lab	-	-	2	1		ISE	25	10		
							ESE(POE)	25	10		
UMCH0635	Machine Design	-	-	2	1		ISE	25	10		
	Lab						ESE(OE)	25	10		
UMCH0641	Industrial Training	-		2	1		ISE	50	20		
	and Mini Project										
	Total	17 2 10 22				2					
		Con	tact o	urs/\	Veek:	Total : 850					
			29	Hrs							

Note : ESE: End Semester Examination, MSE: Mid Semester Examination, ISE: In Semester Evaluation

Professor DEPARTMENT OF ELECTRONICS ENGG. KIES, Gollege of Engineering,

Dr. U. S. Bhapkar Head Department of Mechanical Engg. Kolhapur Institute of Technology' College of Engineering (Autonomot Kolhapur

Professional Elective I*										
Course Code	Course Name									
UMCH0621	Safety and Maintenance Engineering									
UMCH0622	Computational Fluid Dynamics									
UMCH0623	Operations Management									
UMCH0624	Industrial Product Design									
UMCH0625	Industrial Automation and Robotics									
UMCH0626	Applied Numerical Methods									

Open Elective I #									
Course Code	Course Name								
UMCH0671	Energy Conservation and Management								
UMCH0672	Biomedical Engineering								

Course Code: UMCH0501 3 - 3 Course Pre-Requisite: This course requires the basic knowledge of the following: 3 This course requires the basic knowledge of the following: . <th>Title of</th> <th colspan="12">f the Course: Metrology & Quality Control L T P Credit</th>	Title of	f the Course: Metrology & Quality Control L T P Credit														
Course Pre-Requisite: This course requires the basic knowledge of the following: 1. Metric and SI units of physical quantities 2. Statistics 3. Trigonometry and basics of manufacturing engineering Course Description: In today's world of high-technology products, the most important requirements of dimensional and other accuracy controls are becoming very stringent as a very important aspect in achieving quality and reliability in the service of any product in dimensional control. Unless the manufactured parts are accurately measured, assurance of quality cannot be given. In this context, the course deals with the basic principles of dimensional measuring instruments and precision measurement techniques. Course Objectives: 1. To explain importance of metrology, various standards and methods of dimensional measurement. 2. To applain importance of measurement of various parameters of screw threads, gears and surface quality by using different tools. 3. To make the students to identify quality aspects at various stages of product development. 4. To train the students to apply knowledge of statistical tools for analysis of quality. Course Learning Outcomes: Course Learning Outcomes: Course Learning Outcomes: I To eablow the basloon of the course the student should be able to	Course	Code	e: UM	CH050	1						3	-	-		3	
This course requires the basic knowledge of the following: 1. Metric and SI units of physical quantities 2. Statistics 3. Trigonometry and basics of manufacturing engineering Course Description: In today's world of high-technology products, the most important requirements of dimensional and other accuracy controls are becoming very stringent as a very important aspect in achieving quality and reliability in the service of any product in dimensional control. Unless the manufactured parts are accurately measured, assurance of quality cannot be given. In this context, the course deals with the basic principles of dimensional measurement techniques. Course Objectives: 1. To elaborate basic concepts of metrology, various standards and methods of dimensional measurement. 2. To explain importance of measurement of various parameters of screw threads, gears and surface quality by using different tools. 3. To make the students to identify quality aspects at various stages of product development. 4. To train the students to apply knowledge of statistical tools for analysis of quality. Course Learning Outcomes: CO After the completion of the course the student should be able to Bloom's Cognitive level Descriptor CO1 Select proper measuring instrument for specific application I Knowledge & skill CO2 Explain calibration methodology and error analysis related to measuring instruments II <td>Course</td> <td colspan="10">ourse Pre-Kequisite:</td>	Course	ourse Pre-Kequisite:														
1. Metric and S1 units of physical quantities 2. Statistics 3. Trigonometry and basics of manufacturing engineering Course Description: In today's world of high-technology products, the most important requirements of dimensional and other accuracy controls are becoming very stringent as a very important aspect in achieving quality and reliability in the service of any product in dimensional control. Unless the manufactured parts are accurately measured, assurance of quality cannot be given. In this context, the course deals with the basic principles of dimensional measuring instruments and precision measurement techniques. Course Objectives: 1. To elaborate basic concepts of metrology, various standards and methods of dimensional measurement. 2. To explain importance of measurement of various parameters of screw threads, gears and surface quality by using different tools. 3. To make the students to identify quality aspects at various stages of product development. 4. To train the students to apply knowledge of statistical tools for analysis of quality. Course Learning Outcomes: CO After the completion of the course the student should be able to Bloom's Cognitive level Construction of the course the student should be able to Coastign for the course the student should be able to Coastign for the course the student should be able to Coasting fore the course th	This co	urse r	equires	s the ba	isic kno	wledg	e of the	e follov	wing:							
2. Statistics 3. Trigonometry and basics of manufacturing engineering Course Description: In today's world of high-technology products, the most important requirements of dimensional and other accuracy controls are becoming very stringent as a very important aspect in achieving quality and reliability in the service of any product in dimensional control. Unless the manufactured parts are accurately measured, assurance of quality cannot be given. In this context, the course deals with the basic principles of dimensional measuring instruments and precision measurement techniques. Course Objectives: 1. To elaborate basic concepts of metrology, various standards and methods of dimensional measurement. 2. To explain importance of measurement of various parameters of screw threads, gears and surface quality by using different tools. 3. To make the students to identify quality aspects at various stages of product development. 4. To train the students to apply knowledge of statistical tools for analysis of quality. Course Learning Outcomes: C0 After the completion of the course the student should be able to Bloom's Cognitive level C01 Select proper measuring instrument for specific application I Knowledge & skill C02 Explain calibration methodology and error analysis related to measuring instruments II Knowledge C03 Explain calibration methodology and error analysis related to measuring instruments II Knowledge<	1.	Metr	ic and	SI unit	s of ph	ysical c	quantit	ies								
Course Description: In today's world of high-technology products, the most important requirements of dimensional and other accuracy controls are becoming very stringent as a very important aspect in achieving quality and reliability in the service of any product in dimensional control. Unless the manufactured parts are accurately measured, assurance of quality cannot be given. In this context, the course deals with the basic principles of dimensional measuring instruments and precision measurement techniques. Course Objectives: 1. To elaborate basic concepts of metrology, various standards and methods of dimensional measurement. 2. To explain importance of measurement of various parameters of screw threads, gears and surface quality by using different tools. 3. To make the students to identify quality aspects at various stages of product development. 4. To train the students to apply knowledge of statistical tools for analysis of quality. Cognitive CO After the completion of the course the student should be able to Bloom's Cognitive Blot Select proper measuring instrument for specific application I Knowledge & skill CO2 Explain calibration methodology and error analysis related to measuring instruments II CO3 Explain calibration methodology and error analysis related to measuring instruments II Knowledge CO4 Demonstrate use of metrological tools for linear, angular II Understanding	<u><u></u>2. 2</u>	Statis	stics	miand	basias	ofmor	ufaatu	ring or	ainaar	ina						
Course Description: In today's world of high-technology products, the most important requirements of dimensional and other accuracy controls are becoming very stringent as a very important aspect in achieving quality and reliability in the service of any product in dimensional control. Unless the manufactured parts are accurately measured, assurance of quality cannot be given. In this context, the course deals with the basic principles of dimensional measuring instruments and precision measurement techniques. Course Objectives: 1. To elaborate basic concepts of metrology, various standards and methods of dimensional measurement. 2. To explain importance of measurement of various parameters of screw threads, gears and surface quality by using different tools. 3. To make the students to identify quality aspects at various stages of product development. 4. To train the students to apply knowledge of statistical tools for analysis of quality. Course Learning Outcomes: CO1 Select proper measuring instrument for specific application I Knowledge & skill CO2 Explain calibration methodology and error analysis related to measuring instruments II Knowledge CO3 Explain calibration methodology and error analysis related to measuring instruments II Knowledge CO4 Demonstrate use of metrological tools for linear, angular II Understanding	J.	Dogo	mintion		Dasies	or mai	lulaciu	ing ei	Ignieer	ing						
In rotary 5 work of might eccentrology products, the most important requirements of unrelational and only accuracy controls are becoming very stringent as a very important aspect in achieving quality and reliability in the service of any product in dimensional control. Unless the manufactured parts are accurately measured, assurance of quality cannot be given. In this context, the course deals with the basic principles of dimensional measuring instruments and precision measurement techniques. Course Objectives: 1. To elaborate basic concepts of metrology, various standards and methods of dimensional measurement. 2. To explain importance of measurement of various parameters of screw threads, gears and surface quality by using different tools. 3. To make the students to identify quality aspects at various stages of product development. 4. To train the students to apply knowledge of statistical tools for analysis of quality. Course Learning Outcomes: CO After the completion of the course the student should be able to Bloom's Cognitive level Descriptor CO1 Select proper measuring instrument for specific application I Knowledge & skill CO2 Explain calibration methodology and error analysis related to measuring instruments II Knowledge CO3 Explain calibration methodology and error analysis related to measuring instruments II Knowledge CO4 Demonstrate use of metrological tools for linear, angular II Understanding	In toda	$\frac{1}{2}$	vorld o	1. sf high	techn		produc	ts the	most	import	ant rea	uireme	nts of a	dimens	ional a	nd other
In the service of any product in dimensional control. Unless the manufactured parts are accurately measured, assurance of quality cannot be given. In this context, the course deals with the basic principles of dimensional measuring instruments and precision measurement techniques. Course Objectives: 1. To elaborate basic concepts of metrology, various standards and methods of dimensional measurement. 2. To explain importance of measurement of various parameters of screw threads, gears and surface quality by using different tools. 3. To make the students to identify quality aspects at various stages of product development. 4. To train the students to apply knowledge of statistical tools for analysis of quality. Course Learning Outcomes: CO After the completion of the course the student should be able to Bloom's Cognitive level CO1 Select proper measuring instrument for specific application I Knowledge & skill CO2 Explain calibration methodology and error analysis related to measuring instruments II Knowledge CO3 Explain calibration methodology and error analysis related to measuring instruments II Knowledge CO4 Demonstrate use of metrological tools for linear, angular II Understanding	accurac	v con	trols a	e heco	ming x	verv str	ingent	as a ve	erv imr	ortant	aspect	in achi	eving a	uality a	and relia	bility in
In contract of tany product in dimensional control of other on the number of pairs are declarately included, assurance of quality cannot be given. In this context, the course deals with the basic principles of dimensional measuring instruments and precision measurement techniques. Course Objectives: 1. To elaborate basic concepts of metrology, various standards and methods of dimensional measurement. 2. To explain importance of measurement of various parameters of screw threads, gears and surface quality by using different tools. 3. To make the students to identify quality aspects at various stages of product development. 4. To train the students to apply knowledge of statistical tools for analysis of quality. Course Learning Outcomes: CO After the completion of the course the student should be able to Bloom's Cognitive level CO1 Select proper measuring instrument for specific application I Knowledge & skill CO2 Explain working principle of measuring instruments II Knowledge CO3 Explain calibration methodology and error analysis related to II Knowledge CO4 Demonstrate use of metrological tools for linear, angular II Understanding	the serv	vice o	f anv	produc	t in di	mensio	mgent	ontrol	Unless	the m	anufac	tured n	arts are	e accur	ately m	easured
Course Objectives: 1. To elaborate basic concepts of metrology, various standards and methods of dimensional measurement. 2. To explain importance of measurement of various parameters of screw threads, gears and surface quality by using different tools. 3. To make the students to identify quality aspects at various stages of product development. 4. To train the students to apply knowledge of statistical tools for analysis of quality. Course Learning Outcomes: CO After the completion of the course the student should be able to Bloom's Cognitive level CO1 Select proper measuring instrument for specific application I Knowledge & skill CO2 Explain calibration methodology and error analysis related to measuring instruments II Knowledge CO4 Demonstrate use of metrological tools for linear, angular II Understanding	assuran	ce of	quality	r canno	t be gi	ven. In	this c	ontext.	the co	ourse de	eals wit	h the b	asic pri	nciples	s of dim	ensional
Course Objectives: 1. To elaborate basic concepts of metrology, various standards and methods of dimensional measurement. 2. To explain importance of measurement of various parameters of screw threads, gears and surface quality by using different tools. 3. To make the students to identify quality aspects at various stages of product development. 4. To train the students to apply knowledge of statistical tools for analysis of quality. Course Learning Outcomes: CO After the completion of the course the student should be able to Bloom's Cognitive level CO1 Select proper measuring instrument for specific application I Knowledge & skill CO2 Explain working principle of measuring instruments II Knowledge CO3 Explain calibration methodology and error analysis related to measuring instruments II Knowledge CO4 Demonstrate use of metrological tools for linear, angular II Understanding	measur	measuring instruments and precision measurement techniques.														
 To elaborate basic concepts of metrology, various standards and methods of dimensional measurement. To explain importance of measurement of various parameters of screw threads, gears and surface quality by using different tools. To make the students to identify quality aspects at various stages of product development. To train the students to apply knowledge of statistical tools for analysis of quality. Course Learning Outcomes: CO After the completion of the course the student should be able to Bloom's Cognitive level Descriptor CO1 Select proper measuring instrument for specific application CO2 Explain working principle of measuring instruments CO3 Explain calibration methodology and error analysis related to measuring instruments CO4 Demonstrate use of metrological tools for linear, angular II Understanding 	Course	Course Objectives:														
 2. To explain importance of measurement of various parameters of screw threads, gears and surface quality by using different tools. 3. To make the students to identify quality aspects at various stages of product development. 4. To train the students to apply knowledge of statistical tools for analysis of quality. Course Learning Outcomes: CO After the completion of the course the student should be able to Bloom's Cognitive level Descriptor CO1 Select proper measuring instrument for specific application I Knowledge & skill CO2 Explain working principle of measuring instruments II Knowledge CO3 Explain calibration methodology and error analysis related to measuring instruments II Knowledge 	1. To	1. To elaborate basic concepts of metrology, various standards and methods of dimensional measurement.														
by using different tools. 3. To make the students to identify quality aspects at various stages of product development. 4. To train the students to apply knowledge of statistical tools for analysis of quality. Course Learning Outcomes: CO After the completion of the course the student should be able to Bloom's Cognitive level CO1 Select proper measuring instrument for specific application I Knowledge & skill CO2 Explain working principle of measuring instruments II Knowledge CO3 Explain calibration methodology and error analysis related to measuring instruments II Knowledge CO4 Demonstrate use of metrological tools for linear, angular II Understanding	2. To	 To explain importance of measurement of various parameters of screw threads, gears and surface quality 														
 3. To make the students to identify quality aspects at various stages of product development. 4. To train the students to apply knowledge of statistical tools for analysis of quality. Course Learning Outcomes: CO After the completion of the course the student should be able to Bloom's Cognitive level Descriptor CO1 Select proper measuring instrument for specific application I Knowledge & skill CO2 Explain working principle of measuring instruments II Knowledge CO3 Explain calibration methodology and error analysis related to measuring instruments II Knowledge II Knowledge II Knowledge II Knowledge II Knowledge 	by	using	differe	ent too	ls.											
4. To train the students to apply knowledge of statistical tools for analysis of quality. Course Learning Outcomes: CO After the completion of the course the student should be able to Bloom's Cognitive level CO1 Select proper measuring instrument for specific application I Knowledge & skill CO2 Explain working principle of measuring instruments II Knowledge CO3 Explain calibration methodology and error analysis related to measuring instruments II Knowledge CO4 Demonstrate use of metrological tools for linear, angular II Understanding	3. To	3. To make the students to identify quality aspects at various stages of product development.														
Course Learning Outcomes: CO After the completion of the course the student should be able to Bloom's Cognitive level Descriptor CO1 Select proper measuring instrument for specific application I Knowledge & skill CO2 Explain working principle of measuring instruments II Knowledge CO3 Explain calibration methodology and error analysis related to measuring instruments II Knowledge CO3 Demonstrate use of metrological tools for linear, angular II Understanding	4. To	train	the stu	dents t	o apply	/ know	ledge (of stati	stical to	ools for	r analys	is of qu	iality.			
COAfter the completion of the course the student should be able toBloom's Cognitive levelCO1Select proper measuring instrument for specific applicationIKnowledge & skillCO2Explain working principle of measuring instrumentsIIKnowledgeCO3Explain calibration methodology and error analysis related to measuring instrumentsIIKnowledgeCO4Demonstrate use of metrological tools for linear, angularIIUnderstanding	Course	Lear	ning (Outcon	ies:											
COAfter the completion of the course the student should be able toBloom's Cognitiveable tolevelDescriptorCO1Select proper measuring instrument for specific applicationIKnowledge & skillCO2Explain working principle of measuring instrumentsIIKnowledgeCO3Explain calibration methodology and error analysis related to measuring instrumentsIIKnowledgeCO4Demonstrate use of metrological tools for linear, angularIIUnderstanding		1.0				0.1		• .				51				
able tolevelDescriptorCO1Select proper measuring instrument for specific applicationIKnowledge & skillCO2Explain working principle of measuring instrumentsIIKnowledgeCO3Explain calibration methodology and error analysis related to measuring instrumentsIIKnowledgeCO4Demonstrate use of metrological tools for linear, angularIIUnderstanding	СО	CO After the completion of the course the student should be Bloom's Cognitive														
CO1Select proper measuring instrument for specific applicationIKnowledge & skillCO2Explain working principle of measuring instrumentsIIKnowledgeCO3Explain calibration methodology and error analysis related to measuring instrumentsIIKnowledgeCO3Demonstrate use of metrological tools for linear, angularIIUnderstanding		able	e to									level	Des	criptor	0	
CO2 Explain working principle of measuring instruments II Knowledge CO3 Explain calibration methodology and error analysis related to measuring instruments II Knowledge CO4 Demonstrate use of metrological tools for linear, angular II Understanding	CO1	Sele	ct prop	oer mea	asuring	instru	ment fo	or spec	ific app	olicatio	on	Ι	Knc	wledg	e &	
CO2 Explain working principle of measuring instruments II Knowledge CO3 Explain calibration methodology and error analysis related to measuring instruments II Knowledge CO4 Demonstrate use of metrological tools for linear, angular II Understanding	<u> </u>	D	<u> </u>	1.		1 0						11	SK11	1 1		
CO3Explain calibration methodology and error analysis related to measuring instrumentsIIKnowledgeCO4Demonstrate use of metrological tools for linear, angular measurementsIIUnderstanding	02	Exp	lain w	orking	princij	ble of n	neasur	ing ins	trumen	ts	1 4 -	11	Kno	wledg	e	
CO4 Demonstrate use of metrological tools for linear, angular II Understanding	CO3	Exp	lain ca	liibrati	on met	nodolo	gy and	error a	analysis	s relate	ed to	II	Kno	wledg	e	
CO4 Demonstrate use of metrological tools for finear, angular II Understanding		Dor	suring nonstr	instrui	nems	trologi	and too	la for 1	incor	on aula						
i measurements d	CO4	mea	nonsu	ale us	e or me	liologi			inical, a	angula	L	Π	Und	lerstan	ding	
CO5 Scrutinize quality aspects of measurement and quality IV Analyzing	C05	Scri	itinize	analit	vasneo	ts of m	easure	ment a	nd aua	lity		IV	Ana	lyzing		
characteristics of product	0.05	char	acteris	tics of	nroduc	ts of fi	icasure	incin d	ina qua	inty		1 V	1 110	uyzing		
CO6 Estimate limits of gauges and control charts V Evaluating	CO6	Esti	mate 1	imits of	f gailge	es and	control	charts	1			V	Eva	luating		
		Loti	mater	minto o	i guug	co una	control	i enurte				•	Liu	raating	,	
CO-PO-PSO Mapping:	CO-PO)-PSO) Mani	oing:												
	0010		P1													
CO PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO1 PO12 PS01 PS02 PS03	CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO1	PO12	PSO1	PSO2	PSO3
CO1 2 1 2 3 2	CO1	2			1	2						1		3		2
CO2 2	CO2		2	2	2	2								2	2	
CO3 3 2 2 2 2	CO3				3	2		2						2	2	2
CO4 2 2 2 3 2	CO4		2	2	2	3								2	2	
CO5 3 3 2	CO5				3	3		2						2	2	2
CO6 3 3 2 3	CO6		3	3	2	3								2	3	

Assessments :

Teacher Assessment:

Two components of In Semester Evaluation (ISE), One Mid Semester Examination (MSE) and one EndSemester Examination (ESE) having 20%, 30% and 50% weights respectively.

Assessment	Marks
ISE 1	10

MSE 30	0	
ISE 2 10	0	
ESE 50	0	
ISE 1 and ISE 2 are based on assignment/declared test	t/quiz/seminar/Group Discussions etc.	
MSE: Assessment is based on 50% of course content ((Normally first three modules)	
ESE: Assessment is based on 100% course content with	ith60-70% weightage for course content (normally	y last
three modules) covered after MSE.		
Course Contents:		
Unit 1: Introduction to Metrology	9	9 Hrs.
Need of measurement, errors in measurement, standar	rds of measurement.	
Linear measurement: slip gauges and other devices of	linear measurements.	
Angular measurement: Bevel Protractor, Spirit level,	Clinometers, Angle Dekkor, Sine bar, Angle	
slip gauges. Need for Calibration.		
Tolerances and Gauging: Unilateral and bilateral tol	lerances, Limit and Fits, Types of Fits, plain	
gauges and gauge design, interchangeability and sel	lective assembly. Geometric dimensioning &	
Tolerances (GD&T) (Introductory only)		
Unit 2: Comparators & Interferometry	4	4 Hrs.
Comparators: Mechanical, Pneumatic, Optical, Electri	ical (LVDT). Checking all geometrical forms.	
Interferometry: Principle of Interferometry and app	plication in checking of flatness, angle and	
height.		
Unit 3: Metrology of Thread, Gears and Advanc	e Metrology 8	8 Hrs.
Measurement of Thread form: Thread form errors, 1	Measurement of Minor, Major and Effective	
diameter (Three Wire Method), Flank angle, pitch, Flo	oating Carriage Micrometer (Numerical). Gear	
Metrology: Types of errors, Gear tooth Vernier, Cor	nstant chord, Base tangent (Numerical), Gear	
Rolling Tester. Profile Projector, Tool makers micros	scope and their applications. Advancements in	
Metrology: Introduction & applications of: Co-ordina	ate Measuring Machine, Universal Measuring	
Machine, Laser in Metrology, Automatic inspection	on system, Machine vision for online-offline	
inspection.		
Unit 4: Surface finish measurement	7	7 Hrs.
Surface Finish: Types of textures obtained during m	y/c operation, CLA, Ra, RMS, Rz values and	
their interpretation, direction of lay, texture symb	ools. Symbol for designating surface finish.	
straightness, flatness, squareness, roundness on d	rawing, instruments used in surface finish	
assessment.		
Coordinate measuring machine (CMM)		
Unit 5: Introduction to Quality and Quality Tool	ls	6 Hrs.
Concept of Quality and quality control, elements of	f quality, quality of design and conformance,	
balance between cost of quality and value of quality,	, Deming's cycles & 14 Points, Juran Trilogy	
approach, Repeatability and Reproducibility study, Se	even Quality Tools (new), Criteria for Quality	
Award (National & International).Inspection, stages of	of inspection, sampling inspection, single and	
double sampling plans		
Unit 6: Statistical Methods in Quality Control	8	8 Hrs.
Statistical quality control: Statistical concept, Frequen	ncy diagram, Concept of variance analysis,	
Control Chart for Variable (X & R Chart) & Attribute	e (P & C Chart), Process capability(Indices:	
cp, cpk, ppk), Statistical Process Control (Numerical).	Production Part Approval Method (PPAP).	
Acceptance Sampling: operating characteristic curves.	, conflicting interests of consumer and	
producer, producer and consumers risks, AOQL, LTP	Ď.	
Textbooks:		
1. R.K. Jain, "Engineering Metrology", Khanna	Publisher,	
2. I.C. Gupta "Engineering Metrology" Dhanna	at Rai Publications.	
3 M Mahajan "Statistical Quality Control" Dr	annat Rai & Co. 2012	
5. Ivi. Ivianajan, Statistical Quality Collifor Dife	ω	

References:

- 1. N.V Raghavendra and L. Krishnamurthy, Engineering Metrology and Measurements, Oxford University Press, 2014.
- 2. J.F.W. Gayler and C.R. Shotbolt, "Metrology for Engineers", Cassell, 1990
- 3. K.W.B. Sharp, "Practical Engineering Metrology", Pitman London, 1st Edition 1973
- 4. R.C. Gupta, "Statistical Quality Control", Khanna Publication, 1st Edition, 1978

Industrial Visit to study Latest Metrological Instruments.

Unit wise Measurable students Learning Outcomes:

- 1. Students will define different terms in measurement
- 2. Students will select proper instrument for measurement
- 3. Students will define terminology of limit system
- 4. Students will identify different types of fits
- 5. Students will design a gauge

6. Students will identify different types of magnification methods and comparators

- 7. Students will demonstrates use of various angle measuring Instruments
- 8. Students will demonstrates concept of Interferometry and its use in Flatness measurement

9. Students will demonstrates various parameters of surface finish

10. Students will demonstrates various methods of surface finish Measuring instruments

11. Student will measure different parameters of External thread by various measurement methods

12. Student will measure different parameter s of Gear by various measurement methods

13. Students will explain concepts of Quality and Quality Control

14. Students will explain SQC terms and its use in Quality Control

15. Students will explain Acceptance Sampling and its relevance in practical

	f the Course: HEAT TRANSFER	(Т	Р	Credit							
Course	e Code: UMCH0502 3		-	-	3							
Course	e Pre-Requisite: Differential calculus, integral calculus,	Flu	iid mec	hanics	5.							
Course	e Description: The course deals with fundamentals as	pec	ts of h	eat tra	nsfer. The							
knowle	edge of heat transfer in necessary for design of thermal eq	uipı	nents ir	n the ir	dustry and							
simula	ion using Computational Fluid dynamics and Heat transfe	r.										
Course	e Objectives:											
1.	To prepare students of Mechanical Engineering to exce	el in	n heat t	transfe	r problems							
related to thermal Engineering so as to succeed in careers in industry, technical												
	professions or entrepreneurship.											
2.	2. To provide students with a solid foundation in mathematics, science and engineering											
fundamentals required to solve engineering problems in heat and also to pursue higher												
studies.												
3.	3. To train students with good scientific and engineering breadth in the areas of heat											
	transfer so as to comprehend, analyze, design and create	nov	el prodi	ucts an	d solutions							
	for the real life problems		F									
Course	Learning Outcomes.											
$\frac{\text{COULS}}{\text{CO}}$	After the completion of the course the student should	he	Bloor	n's Co	pnitive							
00	able to	<i>b</i> C	level	Desc	riptor							
CO1	Explain fundamentals of Heat and Mass Trans	fer			I ···							
	mechanisms.		2	Unde	erstanding							
					•							
CO2 Develop differential equations for Heat Transfer												
CO2	Develop differential equations for freat frans	ol CI										
CO2	mechanisms.	101	3	A	oplying							
CO2	mechanisms .	SICI	3	A	oplying							
CO2 CO3	Analyze the performance of heat exchangers.		3	Aj Ar	oplying							
CO2 CO3	Analyze the performance of heat exchangers.		3	Aj Ar	oplying alyzing							
CO2 CO3 CO4	Analyze the performance of heat exchangers.	ure	3	Aj Ar	oplying alyzing							

CO-PO,PSO Mapping:

со	PO1	PO2	PO3	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PSO1	PSO2	PSO3
C01	3	-	-	-	-	-	-	-	-	-	-	-	2	-	1
CO2	-	3	-	-	-	-	-	-	-	-	-	-	-	-	-
CO3	-	3	-	-	-	-	-	-	2	-	-	-	3	2	-
CO4	-	3	-	-	-	-	-	-	-	-	_	1	3	2	-

Assessments :

Teacher Assessment:

Two components of In Semester Evaluation (ISE), One Mid Semester Examination (MSE) and one EndSemester Examination (ESE) having 20%, 30% and 50% weights respectively.

Assessment	Marks
ISE 1	10
MSE	30
ISE 2	10
ESE	50

ISE 1 and ISE 2 are based on assignment/declared test/quiz/seminar/Group Discussions etc. MSE: Assessment is based on 50% of course content (Normally first three modules) ESE: Assessment is based on 100% course content with60-70% weightage for course content

(normally last three modules) covered after MSE.

Course Contents:	
UNIT 1: BASICS OF HEAT TRANSFER AND ONE DIMENSIONAL	08 Hrs.
STEADY STATE HEAT CONDUCTION	
1.1 Basics of Heat Transfer:	
Thermodynamics and Heat Transfer, Heat Transfer Mechanisms and Basic	
Laws Simultaneous Heat Transfer Mechanisms. Problem Solving Techniques	
in Heat Transfer.	
1.2 Heat Conduction Equation: General Heat Conduction Equation:	
Rectangular Coordinates, Cylindrical Coordinates and Spherical Coordinates.	
1.2.1 One Dimensional Steady State Heat Conduction Without Heat	
Generation: Plane Wall, Cylinder, Sphere. Boundary and Initial Conditions.	
Variable Thermal Conductivity. Concept of Thermal Resistance Thermal	
Contact Resistance, Overall Heat Transfer Coefficient. Critical Radius of	
Insulation.	
1.2.2 One Dimensional Steady State Heat Conduction With Heat	
Generation: Plane Wall, Cylinder and Sphere.	
UNIT 2: ONE DIMENSIONAL UNSTEADY STATE HEAT	06 Hrs.
CONDUCTION AND EXTENDED SURFACES	
1.2.2: Transient Heat Conduction: Lumped System Analysis, Significance of	
Biot and Fourier Number. Transient Heat Conduction in Large Plane Walls.	
Long Cylinders, and Spheres With Spatial Effects Transient Heat Conduction	
in Semi-Infinite Solids.	
1.2.3 Extended Surfaces (Finned Surfaces): Types of fins, applications,	
Expression for Heat Transfer. Temperature Distribution, fin efficiency and Fin	
effectiveness based fin tip condition Error estimation in Thermowell	
encenveness bused in up condition, Enor estimation in Thermowen.	
UNIT 3: CONVECTION	06 Hrs .
3.1 Fundamentals of Convection: Physical Mechanism of Convection	
Velocity and Thermal Boundary Layer Differential Convection Equations	
(Mass Momentum and Energy Equations) Solution of Convection Equations	
for a Flat Plate Reynolds and Chilton-Colburn Analogy Buckingham's Pi	
Theorem applied to Forced and Free Convection Physical Significance of	
dimensionless numbers	
3.2 External Forced Convection: Local and Average Heat Transfer	
Coefficient Parallel Flow over Flat Plates Flow Across Cylinders and Subaras	
Flow Across Tube Banks	
33 Internal Forced Convection: Mean Velocity and Mean Temperature	
Laminar Flow in tubes Turbulent Flow in Tubes	
34 Natural Convection . Physical Mechanism of natural Convection Natural	

Convection Over surfaces. Natural Convection inside enclosures. Combined	
Natural Convection and Radiation. Combined Natural and Forced Convection.	
	00.11
UNIT 4: THERMAL RADIATION	08 Hrs.
4.1 Fundamentals of Thermal Radiation: Nature of radiation,	
electromagnetic wave spectrum, Black Body Radiation, Laws of Radiation,	
Radiation Intensity, Irradiation, Radiosity, Spectral Quantities, Radiative	
Properties, The Greenhouse Effect.	
4.2 Radiation Heat Transfer: View Factor, Radiation Heat Transfer Between	
Black Surfaces, Radiation Heat Transfer Between Non-Black Surfaces,	
Radiation Shields, Problem Solving using Electrical Analogy, Radiation Effect	
on Temperature Measurements.	
UNIT 5: HEAT EXCHANGERS	08 Hrs.
Types of Heat Exchangers, Overall Heat Transfer Coefficient, Effect of	
Fouling Analysis of Heat Exchangers (Parallel and Counter Flow): LMTD and	
Effectiveness NTU Methods Multi pass and Cross Flow Heat Exchangers	
Selection of Heat Exchangers	
UNIT & COOLING OF ELECTRONIC FOUREMENT	0411mg
UNIT 0: COOLING OF ELECTRONIC EQUIPEMIENT	04 mrs.
Introduction and History, Importance of Heat Transfer in Electronics, Cooling	
Load of Electronic Equipment, Conduction Cooling, Air Cooling, Liquid	
Cooling, Immersion Cooling, Heat Pipes, Thermoelectric Coolers,	
Electrohydrodyanmic Flow, Synthetic Jet, Microchannel Cooling, Cooling by	
nano fluids.	
Textbooks:	
1. Heat Transfer: A Practical Approach, Yunus A. Cengel, McGraw-Hill Higher	r Education;
2 edition	
2. Fundamentals of Heat & Mass Transfer, 7th Edition, Frank P. Incropera, Wile	ey.
3. A Course in Heat and Mass Transfer,: S. C. Arora (Author), S.	
Domkundwar (Author), Anand V. Domkundwar	
4 Heat and Mass transfer: J Holman (Author), Souvik Bhattacharyva, McGraw I	Hill
Education: 10 edition	
5 Heat Transfer- Thermal Management of Electronics Younes Shabany CRC P	ress Indian
Edition	ress, maran
References	
1 Eundamentals of Engineering Heat and mass trassfer P C Sachdeva NEW AC	E. Fourth
adition	JE, Fourth
2 Hoot And Mass Transfer Data Dock C.D. Kathandaraman New Ass Internet	onal Drivata
2. Heat And Mass Transfer, Data Book, C.F. Kothandaraman, New Age Internation	ional Private
Limited; Ninth edition.	
Unit wise Measurable students Learning Outcomes:	
1. Graduates will be able to formulate and solve basic equations of steady state co	onduction
heat transfer problems	
2. Graduates will be able to identify, define, formulate, and solve transient state	conduction
heat transfer and extended surface problems	
3 . Graduates will be able to identify, define, formulate, and solve convection pro-	oblems
4. Graduates will be able to demonstrate fundamental knowledge and formulate,	and solve
radiation heat transfer problems	
5 .Graduates will be able to design a heat exchanger per user defined needs and	
specifications.	
6. Graduates will be able to explain the fundamentals of electronic cooling techni	iques.
	1

Title of the Course: Dynamics of Machines	L	Т	Р	Credit
Course Code: UMCH0503	3	-	-	3
Course Pre-Requisite: Engineering Physics Applied Mechanics King	matics	of M	achine	NG .

Course Description:

This course is an introduction to the dynamics and Vibrations of Lumped-Parameter models of Mechanical Systems. Topics covered include Inertia forces and torques in mechanisms. Balancing of multi-cylinder in-line engines. Balancing of radial and V- engines. Gyroscopic motion: simple theory of gyroscopic couple, gyroscopic effects in machinery, applications of gyroscopes. Fluctuation of energy and speed in machines: crank-effort and turning moment diagrams in flywheels. Free and forced vibrations of one-degree of freedom systems with and without viscous damping. Introduction to torsional vibration. Vibration of single degree of freedom systems with and without damping.

Course Objectives:

1. Analyze the various types of gear trains used for transmission of motion and power.

- 2. Study the gyroscopic effects on vehicles, aero plane and ship and turning moment diagram.
- 3. Study and analyze the problems on balancing of rotary and reciprocating masses
- 4. Study force analysis of simple mechanisms and balancing
- 5. Study basic concepts of vibration analysis

Course Learning Outcomes:

CO	Afte	After the completion of the course the student should be									Bloor	n's Cog	gnitive	
	able	able to										Desc	criptor	
CO 1	Defi	Define various terminology related to gear train, flywheel,										App	lying	
	gyro	scope a	and vib	ration.										
CO2	Inde	ntify th	ne vario	ous mec	chanisn	n and it	ts comp	onents			3	App	lying	
CO3	App	ly anal	ytical f	ormula	e to sir	nple m	echanis	sms to c	calcula	te	3	App	lying	
	desi	gn para	meters											
CO4	Ana	lyze dy	namics	s of sim	ple me	chanis	ms.				4	Ana	lyze	
CO-PO	Э Мар	ping:												
CO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PS	PS	PS
	1	2	3	3	4	5	6	7	8	9	10	01	02	03
CO	3													
1														
CO	2	2	1											
2														
CO	2	2	2									1		1
3														
CO		3	2	1								2		2
4														

Assessments :		
Teacher Assessment:		
Two components of In Semester Evaluation (ISE),	One Mid Semester Examination (MSE) a	and one
End Semester Examination (ESE) having 20%, 309	6 and 50% weights respectively.	
Assessment	Marks	
ISE 1	10	
MSE	30	
ISE 2	10	
ESE	50	
ISE 1 and ISE 2 are based on assignment/declared t	est/quiz/seminar/Group Discussions etc.	
MSE: Assessment is based on 50% of course conte	nt (Normally first three modules)	
ESE: Assessment is based on 100% course content	with 60-70% weightage for course conte	nt
(normally last three modules) covered after MSE		
Course Contenta		
Course Contents:		06 IIma
Unit 1:Gear Irains	d Eniovalia goog train. Tabular mathad	00 mrs.
Types of Gear trains- Simple, Compound, Reverted	d, Epicyclic gear train, Tabular method	
For finding the speeds of elements in Epicycl	ic gear train, Differential gear box.	
Equivalent mass and Moment of merua applied to g	gear trains.	07 Шта
Unit 2:Gyroscope	tion Companyin any la and its offerst	07 mrs.
Gyroscopic couple, Spinning and Precessional mo	Wheeler	
On = 1) Aero plane (1) Ship (1) Four-wheeler (V) Tw	/0 – w neeler.	07 11
Unit 3:Static and Dynamic force analysis	has an aladia al marche al Taradia Como	07 Hrs.
velocity and acceleration of slider crank mechanical	sm by analytical method, inertia force	
and torque, D Alembert's principle, Dynamically	equivalent system, force analysis of	
reciprocating engine mechanism.		07 11
Unit 4: Balancing and Flywneel	noting manager Drimows and Sacondamy	07 Hrs.
Static and Dynamic balancing of fotary and recipro	Cating masses. Primary and Secondary	
forces and couples. Balancing of Single cylinder, I	wulti cylinder-inline Engines. Function	
of flywheel and Study of turning moment diagram.		07 H ag
Unit 5:Free vibrations (SDOF)	Displacement Valacity	07 Hrs.
Basic concepts and definitions, vibration measuring	ng parameters- Displacement, velocity	
with acceleration, Free and forced vibrations, Equiv	Targing le Transverse) de grad of	
domning Logarithmic document aquivalent viscos	r, Torsional & Transverse), degree of	
Unit (a Earroad Vibratiang (SDOE)	us damping, Coulonio damping.	06 U ma
Unit o:Forced vibrations (SDOF)	tion factor frequency response surves	00 mrs.
vibration isolation and transmissibility forced	with actor, frequency response curves,	
Critical aroad of shefts	vibrations due to support excitation.	
Toythooks:		
1 Poten S S "Theory of Machines" Tota McGraw	Hill Now Dolhi 3rd Edition 2011	
2. Sadhu Singh "Theory of Machines" Dearson Edu	Thin, New Denn, Std Edition, 2011.	
2. Sadiu Shigi, Theory of Machines, Featson Editor	2000 Nirali Dublication 5th Edition 200	0
4 Machanical Vibrations by Grover G K. Nameha	nd Publications	9.
4. Mechanical vibrations by Orover O.K., Nemena Deforences:	nd Fublications.	
1 Hamilton H Mahia and Charles E Dainholtz (10)	27) "Machanisms and Dynamias of	
Machinery" Fourth Edition John Wiley and So	and Dynamics of Dynamics of the Southern Service Servi	
2 Ghosh A and Mallick A K (1088) "Theory of	Mechanisms and Machines"	
Affiliated Fast West Press Dut I to New Dalhi	wice manifolds and wide miles ,	
3 William T Thomson Marie Dillon Dahleh and C	handramouli Padmanahhan (2004)	
	nanoramoun i aomanaonan, (2004),	

"Theory of Vibration with applications", Fifth Edition, Pearson Education Publishers.

- 4. Theory of Machines by Dr. V.P.Singh, Dhanpat Rai Publications.
- 5. Theory of Machines by Ballaney, Khanna Publications.
- 6. Mechanical Vibrations by S.S.Rao, Pearson Education Publications
- 7. Theory of vibrations with applications by W.T. Thomson (CBS Publications)
- 8. Kinematics, Dynamics and Design of Machinery by Walidron, Wiley India Publi.

9. Theory of Vibration with applications by W.T.Thomson M.D.Dahleh.C.Padmanabhan

Pearson Education

Unit wise Measurable students Learning Outcomes:

- 1. Identify types of Gear trains
- 2. Explain the concepts of gyroscope
- 3. Evaluation of Static and Dynamic force analysis
- 4. Apply Balancing principles to the Reciprocating and Rotary machines.
- 5. Understand the fundamental concepts of vibrations.
- 6. Apply analytical formulae to solve vibratory problems.

Title o	f the (Cours	e: De	sign of	f Mac	hine E	leme	nts				L	Т	Р	Credit
Course	e Cod	e: UM	ICH05	504								3	1		4
Course Pre-Requisite: Analysis of Mechanical Element, Machine Drawing, Kinematics of Machines															
Course Description: Design of Machine Elements is the application of mathematics, kinematics,															
statics,	statics, dynamics, mechanics of materials, engineering materials, mechanical technology of metals							of metals							
and en	gineer	ing dı	awing	g. Mec	hanica	ul desi	gn, in	ventio	n, and	engin	eering t	asks i	nvolve	e knov	vledge of
various	s macl	nine e	lemen	ts and	creat	ive co	mbini	ng of	these	eleme	nts into	a cor	npone	nt or	assembly
that fil	ls a n	eed. '	The k	nowlee	dge of	this	subjec	t is v	ery es	sential	for an	engin	eer in	desig	ining the
various	s parts	of a r	nachir	ne.	•										
Course		ective	s: Th	e cour	se aim	s to-:		c	1	1	_				
1.	Stud	y runc	amen	tai prii	doto b	s in de	sign o r doci	i mac	nine el	lements	S.				
2. 3	Lear	n to u	se of c	lesign	uata D	ook it oonta f	rom m	gn or i	oturor	's cotol	ogue				
5. 4	Doci	n to se	ohina	alama	e eleli	bioctor	to st	anula atic lo	oding	s catal	ogue.				
H.		ning		mos	nts su	ojeciei	1 10 54		aunig.						
		ning r tho	comn	lotion	of the	cour	so tho	stude	nt ch	uld be		Blo	om's	Comi	tive
co	ahle	to to	comp	iction	or the	Cour	se the	stuut	int sinc	Julu D	·	DIO	oni s	Cogiii	1100
	abit											low	1 I	Dagaria	ntor
COL	Evn	loin fr	ndom	ontol r	minain	lacin	docion	ofm	ochina	alama	nta	1000		Indor	JUI
COI	Елр	iani n	muam	entai j	Jincip	nes m	uesigi	I OI III	aciint	elenie	mts.	2	, '	Juders	anung
CO2	Mak	te use	of des	sign da	ita boc	ok for o	design	of ma	achine	eleme	nts.	3		App	lying
CO3	Sele	ct ma	chine	eleme	nts fro	m mar	nufact	urer's	catalo	gue.		4		Anal	yzing
CO4	Dete	ermine	e the p	arame	ters of	vario	us ma	chine	eleme	nts.		4		Anal	yzing
CO-P() Mai	oning													I
CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO	2 PSO3
CO1	3	2	1										2		
CO2	2	2													
CO3	1	2	2	1											
CO4	2	1	2	1											
Assess	ments	:													
Teach	er Ass	essme	ent:												
Two co	ompor	nents (of In S	Semes	ter Ev	aluatio	on (IS	E), O	ne Mi	d Seme	ester Ex	amina	ation (MSE)	and one
End Se	emeste	r Exa	minati	on (ES	SE) ha	ving 2	0%, 3	0% an	nd 50%	6 weigh	nts respo	ectivel	y.		
Asses	sment	-						Ma	arks						
ISE 1								10							
MSE								30							
ISE 2								10							
ESE								50							
ISE 1 a	and IS	E 2 ar	e base	d on a	ssignr	nent/d	eclare	d test/	auiz/s	eminar	/Group	Discu	ssions	etc.	1
MSE:	Assess	sment	is bas	ed on :	50% o	f cour	se con	tent (1	Norma	lly firs	t three 1	nodul	es)		
ESE:	Assess	sment	is ba	used o	n 100)% co	urse	conter	nt witl	, h60-70	% weig	ghtage	for	course	e content
(norma	ally las	st three	e mod	ules) c	overe	d after	MSE								
Course	e Con	tents:													
Unit 1	:Fu	ndam	entals	5 of M	achin	e Desi	gn &	Desig	n of S	imple 1	Machin	e Elei	nents		08 Hrs.
А.	Conc	cept o	of Ma	chine	Desig	n, Bas	sic de	sign 1	proced	lure, F	actor of	f safe	ty and	d its	
	significance, Type of Loads, Selection of engineering material & IS Coding for														
	ferro	us n	nateria	ıl, Fa	ctor	gover	ning	selec	tion	of m	aterial,	Man	ufactı	iring	
	Cons	siderat	ions i	n Desi	gn, us	e of de	esign o	lata ha	and bo	ok, DF	FMA.				
	P							• 1	1	7 11	. .			1	
В.	Des	ign of	mach	nne el	lement	ts und	er stat	tic loa	ıdıng-l	Knuckl	e Joint	and H	sell C	rank	
	Lever.														

Unit 2: Design of Shafts, Keys and Couplings	07 Hrs.
Design of shafts on the basis of strength, torsional rigidity and A.S.M.E. code, Design of	
keys and splines, Design of Muff, Flange and Flexible Bushed Pin type Couplings.	
Unit 3: Design of Bolted & Welded Joints	07 Hrs.
Design of bolted joints subjected to Eccentric Loading- 1) In a plane containing bolts,	
2) Parallel to axis of bolt, 3) Perpendicular to the axis of bolt.	
Welding symbols, Stresses in butt and fillet welds, Strength of butt, parallel and transverse	
fillet welds, Eccentric load in plane of welds, Welded joints subjected to bending moment.	
Unit 4: Design of Spring	06 Hrs.
Types of springs, materials and their applications, Styles of end, Stress and deflection	
equations for helical compression Springs, Springs in series and parallel, Design of Helical	
Compression Spring subjected to static loading.	
Unit 5: Design of Power Screw	07 Hrs.
Forms of threads, Terminology of threads, Friction in threads, multiple start screws, Torque	
analysis for lifting and lowering load, Design of power screws and nut with square,	
trapezoidal threads, Self locking & Overhauling of screw, Stresses in power screws,	
Turnbuckle.	
Unit 6:Design of Pulley and Selection of Belts	05 Hrs.
Design of Pulley-Falt and V belt pulley, Selection of flat belt and V belt as per the standard	
manufacturer's catalogue.	
Teaching assessment of tutorials will be based on the completion of following assignm	nents/
Case Studies.	
Assignment on Fundamental of Machine Design.	
Numerical/Case Study on Design of Simple of Machine Elements.	
Numerical/Case Study on Design of Shafts, Keys & Couplings.	
Numerical/Case Study on Design of bolted & welded joints.	
Numerical /Case Study on Design of Spring.	
Numerical/Case Study on Design of Power screw	
Numerical/Case Study on Selection of Belts from manufacturer catalogues.	
Textbooks:	
1. Design of Machine Elements, V.B.Bhandari., Tata McGraw Hill Publication, 3 rd Edition.	
2. Machine Design, R.K.Jain, Khanna Publication.	
3. Machine Design, Pandya Shah, Charotar Publication.	
4. Machine Design, U.C.Jindal, Pearson Education.	
5. Introduction to Machine design, V.B. Bhandari, Tata McGraw Hill Publication, 2 nd Edition.	
References:	
1] Machine Design, Hall, Holowenko Laughlin, Tata McGraw Hill Pub. Schaums Outline Series	ries.
2] Design of Machine Element, J.F. Shigley, Tata McGraw Hill Publication, 9 th Edition.	
3] Design of Machine Element, M.F.Spotts, Pearson Education Publication, 6 th Edition.	
4] PSG Design data Book.	
5] Machine Component Design, Robert C. Juvniall, Willey Ltd, 5th Edition.	
6] Mechanical Design of Machine Elements and Machines, Jack A Collis Henry Busby, Georg	ge Staab
Wiley ltd., 2nd Edition.	
7] Machine Design, P. Kannaiah, Scitech Publication, 2 nd Edition.	
8] Design Data Book, Mahadevan, CBS Publishers and Distributors Pvt Ltd, 4 th Edition.	
Unit wise Measurable students Learning Outcomes: Student will be able to	
1. Apply basic principles of machine design and to design of machine elements like Knuckle Jo	oint and
Bell Crank Lever against static loading.	
2. Design of solid & hollow shafts, key & couplings.	
3. Design of bolted joints & welded joints.	
4. Design of Springs.	
5. Design of Power Screw.	
6. Select flat belt and V belt as per the standard manufacturer's catalogue.	

Title of	the Course: Manufacturing Engineering	L	Т	Р	Credit					
Course	Code: UMCH0505	3	1		4					
Course	Course Pre-Requisite: Machine tool, Manufacturing process, Workshop practice, Machine									
Drawing.										
Course	Course Description: This course gives details about the mechanics behind the metal cutting and									
selection	n of cutting parameters and different tools w.r.t the different manu	factui	ring pr	ocesse	2S.					
Course	Objectives:									
1. Study	y of metal cutting technology including the process, measureme	nts, d	lesign	and so	election of					
various	cutting tools and their industrial specifications.									
2. To in	troduce the students to the design practices of tooling's (Jigs and	Fixtu	res) a	nd die	design for					
presswo	rk.									
3. Study	of various aspects of CNC machine technology and its tooling.									
Course	Learning Outcomes:									
CO	After the completion of the course the student should be able	D	loom?	a Caa	nitivo					
CO	After the completion of the course the student should be able			S COg	muve					
	to	le	ever	Desc						
CO1	10 Apply knowledge of conventional metal Cutting processe and identifies perspectors of single and multipoint outfing tools	s	Ι	Cogi (Vnc	nuve					
	To A polyging the moblem logically and demonstrate on chility to				homotor					
CO2	10 Analyzing the problem logically and demonstrate an ability	.0	II	PSyc (Stat	nomotor					
	To A polyging the problem logically and demonstrate an ability t				1) homotor					
CO3	design fixtures	.0	II	rsyc	1)					
	To Chassa different dies for press working operations				1) homotor					
CO4	CO4 10 Choose different dies for press working operations II Psychomotor									
	To Decompize CNC technology				1)					
CO5	10 Neuginze CNC technology.		III		tude)					
				(Atti	luue)					

CO-PO Mapping:

РО	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO	2														
CO	2	2													
CO		3		3									2	3	
CO		2											2	2	
CO			3										2	2	

Assessments :

Teacher Assessment:

Two components of In Semester Evaluation (ISE), One Mid Semester Examination (MSE) and one End Semester Examination (ESE) having 20%, 30% and 50% weights respectively.

Assessment	Marks
ISE 1	10
MSE	30
ISE 2	10
ESE	50

ISE 1 and ISE 2 are based on assignment/declared test/quiz/seminar/Group Discussions etc. MSE: Assessment is based on 50% of course content (Normally first three modules) ESE: Assessment is based on 100% course content with60-70% weightage for course content (normally last three modules) covered after MSE.

Course Contents:	
Unit 1:- Theory Of Metal Cutting-	(07)Hrs.
Wedge action, Concept of speed, Feed and depth of cut, orthogonal and oblique cutting.	
Mechanics of metal cutting-Chip formation, Types of chips, cutting ratio, shear plane	
and shear angle, velocity relationships, force measurement by tool dynamometers,	
cutting tool materials and their properties, Advanced cutting tools. Machinability of	
Metals- Factors affecting, improvement and machinability index.	
Unit 2:- Tool life and Tool geometry	(07)Hrs.
A. Tool life - Types of wear, relationship with cutting parameters, Taylor's equation,	
and improvement measures. Surface finish- Factors affecting, effect of cutting	
parameters, improvements. Heat generation in machining, its effect on cutting force,	
tool life and surface finish, types and selection criteria of cutting fluids. (4)	
B. Tool geometry -Parts, angles and types of single point cutting tools, tool geometry of	
single point cutting tool, tool geometry of multipoint cutting toolsdrills, milling	
cutters, reamers. Tool setting procedure (3)	
Unit 3:-Design of Drilling Jigs	(07)Hrs.
A. Introduction to Jigs and Fixtures. Necessity, applications and types, basic concept	
of jigs and fixtures for different manufacturing processes, (1)	
B. Location and clamping system : Principles, types, applications, locating pins, pads,	
diamond pins, adjustable supports, Vee and post locators, clamping system principle,	
types, screw clamp, strap, lever, hinge type, cam operated, toggle clamps, centralizer	
and equalizer clamp, multiple clamping, quick acting clamps, pneumatically operated	
clamps.(4)	
C. Design of Jigs : Principles of jig design, types of jigs- plate, template, box, channel,	
sandwich, latch, tumble, turn-over, tumble jig etc., types of bushes, selection of bushes	
and liners, construction of jig and fixture bodies, use of standard parts(2)	
Unit 4:- Design of Milling Fixtures	(08) Hrs.
A. Design of fixtures: Principles of fixture design, types of fixtures- gang, straddle,	
vertical, slot, string milling fixture etc, selection of the suitable type, design of milling	
fixtures, use of setting block, tennons, T-bolts etc, Indexing System: Necessity, different	
indexing systems for jigs and fixtures.(5)	
B. Computer Aided Fixture Design:-Introduction to computer Aided Fixture	
Design,(3)	
Unit 5:- Press Tools	(06) Hrs.
Dies, punches, types of presses, clearances, types of dies, strip layout, calculation of	
press capacity, center of pressure, Design consideration for die elements (Theoretical	
treatment only).	
Unit 6:- UNU Technology and Tooling	(06) Hrs.
UNC rechnology and UNC tooling: introduction, Construction and working of UNC,	
Automatic nellet changer (ADC) New trands in Tool Metariols. Turning tool geometry	
Automatic panet changel (AFC) New tiends in Tool Materials, Turning tool geometry,	
systems Tools presetting. Work holding	
Taythooks:	
1) S K Haira Choudhury Elements of workshop technology – Vol II Media Promoters	
And Publishers Mumbai	
2) Text Book of Production Engg - P.C. Sharma- S. Chand Publication	
3) Machine Tool Engg -G R Nagarnal- Khanna Publication	
4) Principles of Modern manufacturing Groover Fifth Edition Wiley	
References:	
1) S. K. Basu, "Fundamentals of Tool design". Tata Mcgraw Hill Education Private ltd	
2) Jigs & Fixtures- Kempster .ELBS.	
3) Fundamentals of Tool Design design-ASTME Publication.	
4) Tool Design-Donaldson – THM Publication	

5) Machine tool Engg.-G.R. Nagarpal- Khanna Publication

6) Theory of Metal Cutting-Sen Bhattacharya

7) Production Engg. Design (Tool Design)-S. Chandar & K. Surendra Satya Praka.-Delhi

8) Production Tooling Equipment-S.A.J.Parsan

9) Metal cutting theory & Tool design- Mr. Arshinnov MIR Publication.

10) Process Engineering for Manufacturing - Eary & Johnson (Prentice Hall)

11) Process Planning: The Design/Manufacturing Interface, –Petert Scallan, (2003), (Buttreworth Heinmann, Elsevier) ISBN: 0-7506-51-29-6

12) A Text Book of Production Engg, P.C. Sharma, (Millennium Edition, 2000)S Chand & 13) Automation, Production Systems, and C.I.M. – Groover, M.P. 3/e, (PHI)

14) Workshop Technology Vol. III – Chapman (ELBS)

15) Mechanical Estimating and Costing – TTTI Chennai (TMH)

16) Manufacturers' catalogues for cutting tools and inspection equipments

17) Product Design-Kevin Otto and Kristin Wood (Pearson)

18) Production Technology-HMT – Tata McGraw-Hill Publishing Ltd.

19) Westerman Tables (Metals) (New Age International)

20) Standard manuals of ISO, QS, TS etc

Unit wise Measurable students Learning Outcomes:

UO1.1: Apply knowledge of manufacturing processes and identify parameters of various processes .

UO2.1 Apply knowledge of manufacturing processes and identify parameters of single and multipoint cutting tools.

UO 3.1 Students can study the different design considerations of jigs and fixtures with respect to different operations.

UO4.1: Students can study the different design considerations of jigs and fixtures with respect to different operations. Principles and types of locating, clamping and tool guiding/tool presetting elements.

UO5.1: Students can select and design dies for press working operations.

UO6.1: Students can study of various aspects of CNC machine technology and its tooling, automation, work holding devices, too presetting.

Title of the Course: Control Engineering (Audit Course)	L	Т	Р	Credit
Course Code:UMCH0561	3	-	-	0
Course Pre-Requisite: There are no formal prerequisites for the need some knowledge of material from the following courses: electrical engineering.	his cour physics	se; howe , mathen	ever yo natics a	u will Ind
Course Description: This course provides an introduction to 1 and Laplace transforms. It covers stability and feedback, and prespecifications of transient response.	inear sy rovides	stems, tı basic de	ansfer sign to	functions, ols for
Course Objectives: 1. Understand analogies between different dynamic systems systems. This assists in understanding the wider implication including responsibility in social, cultural and environmental is 2. Understand the concept of feedback and how it influences th	s and to s of the ssues ie respon	b be ablese engine	le to n neering system	nodel such g concepts,

3. Understand the response of a dynamic system to an input signal and to be able to predict the response of a particular system. This applies the mathematical and engineering sciences, including physics, to real-life problems.

4. To synthesize and demonstrate the efficacy of solutions to part or all of complex engineering problems, including formulating models from first principles of engineering science and mathematics

Course Learning Outcomes:

CO	After the completion of the course the student should	Bloom's	Cognitive
	be able to	level	Descriptor
CO1	Construct models of physical systems in forms suitable for	3	Applying
	use in the analysis and design of control systems.		
CO2	Make use of block diagram reduction, signal flow	3	Applying
	technique to represent control system		
CO3	Identify the time domain responses of first and second-	3	Applying
	order systems to inputs like step, impulse etc.		
CO4	Construct root locus and analyze time domain control	3	Applying
	system		

CO-PO-PSO Mapping:

CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	P10	PO11	PSO1	PSO2	PSO3
CO1	3													
CO2	3	2												
CO3	2	2											2	
CO4					2									

Assessments :

Teacher Assessment:

One End Semester Examination (ESE) having 100% weightage

Assessment	Marks							
ESE	100							
ESE: Assessment is based on 100% course content								

Course Contents:							
Unit 1: Introduction: Basic Elements of Control System –	5 Hrs.						
Classification of control system: Open loop and Closed loop systems,							
linear-non linear, SISO-MIMO, etc. Advantages and limitations of open							
loop and closed loop systems and its applications.							
Unit 2:- Mathematical Modeling : Modeling of Electric systems,	6 Hrs.						
Translational and rotational mechanical systems – Analogous Systems,							
Force – Voltage Analog, Force – Current Analog.							
Unit 3: Control system representation: Block diagram Algebra, Signal flow graph- Reduction using mason's gain formula.	6 Hrs.						
Unit 4: Time Response Analysis: Standard test signals - Time	8 Hrs.						
response of first order systems for impulse, step inputs, Transient response							
of second order systems for unit step input. Time domain specifications.							
Unit 5: State Space Analysis of Continuous Systems: Concepts of	7 Hrs.						
state, state variables and state model, State Space Analysis: System							
Representation, Direct, Parallel, Series and General Programming.							
Unit 6: Stability & Root Locus Analysis: Concept of stability, relative	8 Hrs.						
stability. Stability criterion-Routh's stability. Root Locus-significance and							
construction.							
Textbooks:	a :m 1						
1 Control System Engineering", R Anand Natarajan, P. Ramesh Babu, S	Scillech						
Publication, 2 nd Edition.							
2"Control Systems", A. Anand Kumar, Prentice Hall Publication.	cth r l'.						
3 "Automatic Control Engineering", F.H. Raven 1 ata McGraw Hill Publicati	on, 5° Edition.						
4 Feedback Control Systems, K.A.Barapte, Tech-Max publications.							
Keierences:							
1. Modern Control Systems, K Ogala, Prentice Hall Publication, 5 Educo	I. Dublication 7 th						
2. Automatic Control Systems, B.C. Kuo, whiley india Ltd. / Plenuce Hai	r Publication, /						
2 "Automatic Control Engineering" D. Roy and Choudhari, Orient Longe	an Publication						
S. Automatic Control Engineering, D. Koy and Choudhan, Orient Longh							
4 "Modern Control Engineering" K Ogata Pearson Education							
4. Modern Control Engineering , R. Ogata, i carson Education							
Unit wise Measurable students Learning Outcomes:							
Chie wise measurable statemes Dearning Outcomes.							
• Derive equations to model the dynamics of simple system.							
• Draw block diagrams and signal flow graphs to represent different co	ontrol systems.						
 Use Laplace Transforms to derive transfer functions. 							
• Represent state space model to analyze control systems.							
 Construct and use Roots' Loci diagrams to characterize simple dynamical systems. 							

Title of	f the Course: CAD/CAM Lab	L	Т	Р	Credit			
Course	e Code: UMCH0531		-	2	1			
Course	Course Pre-Requisite: Machine tool, Manufacturing process, Workshop practice,							
Machir	ne Drawing.							
Course	Description: This lab gives detail about CAD /CAM knowledge	ge and	to de	sign a	ny			
industri	al component in to 3D. This Lab also gives about the fundamen	itals of	rapic	proto	typing &			
3D prin								
Course	e Objectives:							
1. Stud	y of different CAD software's for designing any 3D com	pone	nt.					
Z. Stuc	ly of various aspects of UNC machine technology and it	s tool	ing.	,	111 0.0			
3. 10	introduce the students to the advance manufactu	iring	meti	lods	like 3D			
printin	g.							
Course	e Learning Outcomes:							
CO	After the completion of the course the student	Bloo	om's	Cogn	itive			
	should be	leve	l D	escrip	otor			
	able to			-				
CO1	Interpret the given drawing and use various	II	U	nderst	anding			
	command to create 3D of given part.							
	of the second							
CO2	Mala was of different common data success the surface	III	A	pplyin	ıg			
	Make use of different command to create the surface							
	model.							
<u> </u>		11/	•		~			
	categorize different tolerances on drawing.	1.	A	рргуш	ig			
CO4	Develop CNC part program from CAD model using	ш	Δ	nnlvin	σ			
04	CAM as the set		11	ppiym	5			
	CAM software.							
CO5	Create any 3d component with any advanced	VI	C	reating	g			
	manufacturing method				-			
	1	1	1					

CO-PO Mapping:

PO	1	2	3	4	5	6	7	8	9	10	11	12	PSO1	PSO2	PSO3
CO1	3	2			3								2	2	
CO2	2	3	3		3								3	3	
CO3		3	3										3		
CO4	3	3			3								3	3	
CO5	3	3	3		3								3	3	

Assessments :

Teacher Assessment:

One component of In Semester Evaluation (ISE) and one End Semester Examination (ESE) having 50%, and 50% weights respectively.

Assessment	Marks
ISE	25
ESE(POE)	25

ISE are based on practical performed/ Quiz/ Mini-Project assigned/ Part /Assembly drawing Internal oral etc. ESE: Assessment is based on oral examination

Co	ourse Contents:					
1.	Unit 1 :- Introduction to CAD/CAM, GUI, Solid & surface Modeling	04 Hrs.				
	Introduction – Introduction to CAD/CAM in PLC, modeling, simulation,					
	analysis and optimization. Introduction to Graphical User Interface					
	(GUI), Parametric solid modeling – fundamentals, apply/modify					
	constraints and dimensions; transform the parametric 2-D sketch into					
	a 3D solid, feature operations, Introduction, various commands in					
	surface modeling.					
2.	Unit 2 Assembly Modeling and Production Drawing	04Hrs.				
	Assembly modeling – Defining relationship between various parts of					
	machine, creation of constraints, generation of exploded view.					
	Production drawing – Generation of 2-D sketches from parts and					
	assembly 3-D model, appropriate dimensioning and tolerance					
3.	Unit 3 Part Programming	04Hrs.				
	Introduction to manual part programming, use of G and M codes to					
	generate parts on turning centers, VMC's, HMC's etc					
4.	Unit 4 Computer Aided Manufacturing	02Hrs.				
	Introduction to data exchange formats, integration of CAD/CAM					
	software to generate tool path using suitable software,					
5.	Unit 5 Advanced Manufacturing Method – Rapid Prototyping	04Hrs.				
	Introduction to Rapid Prototyping, classification of RP Processes,					
	Working principle, models & specification process, application,					
	advantages & disadvantages & one case study of					
•	Stereo Lithography Apparatus (SLA)					
•	3D Printing.					
•	Fused Deposition Modeling [FDM]					
Te	xtbooks:					
1)	"CAD/CAM- Principals and Applications", P.N. Rao, Tata McGraw Hill, 2nd	Edition.				
2.	"CAD/CAM/CAE", N.K. Chougule, SciTech Publication, Revised Edition.					
3.	Ibrahim Zeid "Mastering CAD CAM" Tata McGraw-Hill PublishingCo.2007					
4.	Radhakrishnan P, SubramanyanS.andRaju V., "CAD/CAM/CIM", 2nd Editic	n, New				
Ag	e International (P) Ltd, New Delhi,2000.	,				
Re	ferences:					
1. '	"Machine Drawing", N. D. Bhatt and V.M. Panchal, Charoter Publications					
2	ASME Y14.5, (2009)					
3. '	"Mastering CAD CAM",Ibrahim Zeid, Tata McGraw-Hill, Special Indian Edit	tion,				
(20	007).					
4.	4. Help Manuals and Tutorials of Referred Software					
5. '	"Machine Drawing", N. Siddheshwar, P. Kannaiah, V V S Sastry, Tata McGra	aw Hill				
Pu	blications, 2nd Edition.					
6. '	6. "CAM/CAM – Theory and Practice",Ibrahim Zeid, R. Sivasubramaniam, Tata					

McGraw Hill,2nd Edition.

7. "CAD/CAM – Concepts and applications", Chennakesava R. Alavala – Prentice Hall of India

Experiment wise Measurable students Learning Outcomes:

UO1.1: Understand the basic fundamentals of computer aided design and manufacturing.

UO2.1 To learn 2D & 3D transformations of the basic entities etc.

UO 3.1 To understand the different geometric modeling techniques like solid modeling, surface $% \left({{\left[{{{\rm{TO}}} \right]}_{\rm{TO}}} \right)$

Modeling, feature based modeling etc. and to visualize how the components look like before its manufacturing or fabrication.

UO4.1To learn the CNC part programming.

U05.1To learn the advance manufacturing processes like rapid prototyping with one component.

LIST OF EXPERIMENTS

Term Work:

1. Solid Modeling with drafting - 2 Exercises

2. Surface Modeling like mouse, badminton racket, monitor, hair dryer etc. - 2 Exercises

3. Assembly with minimum 5 components like crane hook, tail stock, screw jack, Universal coupling etc.

4. Part programming for CNC turning center – 2 parts

5. Part programming for Vertical Machining Center – 2 parts

6. Tool path generation by using suitable CAM software – 2 parts

7. Part creation using 3D printing machine -2 parts

Course Code: UMCH0532 - 2 1 Course Pre-Requisite: Applied Mechanics, Engineering Physics - 2 1 Course Description: This course deals with demonstration of different measuring devices and systems and conduct of various experiments on the same. It also deals with testing and calibration of various measuring systems. - 1 Course Objectives: 1. To study different measuring systems. - - 2 1 . To study different measuring systems. - - - - 2 1 Course Learning Outcomes: - <td< th=""><th>Title of</th><th>f the C</th><th>Course</th><th>: Mea</th><th>surer</th><th>nent I</th><th>Lab</th><th></th><th></th><th></th><th>L</th><th>Т</th><th>Р</th><th>Cr</th><th>edit</th></td<>	Title of	f the C	Course	: Mea	surer	nent I	Lab				L	Т	Р	Cr	edit
Course Pre-Requisite: Applied Mechanics, Engineering Physics Course Description: This course deals with demonstration of different measuring devices and systems and conduct of various experiments on the same. It also deals with testing and calibration of various measuring systems. Course Objectives: 1. To study different measuring systems. 2. To perform testing and calibration of different gauges and measuring devices 3. To study different types of sensors and transducers Course Learning Outcomes: CO After the completion of the course the student should be Bloom's Cognitive able to COI Explain the working of different measuring devices. 2 Understanding CO2 Demonstrate testing and calibration of measuring systems. 2 Understanding CO3 Identify types of sensors and transducers. 3 Applying CO-PO Mapping: CO POI PO3 PO4 PO5 PO6 PO7 PO8 PO90 PS01 PS02 PS03 CO-PO Mapping: CO PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PS03 PS03 <td colspa<="" td=""><td>Course</td><td colspan="7">Course Code: UMCH0532 -</td><td>-</td><td>-</td><td>2</td><td></td><td>1</td></td>	<td>Course</td> <td colspan="7">Course Code: UMCH0532 -</td> <td>-</td> <td>-</td> <td>2</td> <td></td> <td>1</td>	Course	Course Code: UMCH0532 -							-	-	2		1	
Course Description: This course deals with demonstration of different measuring devices and systems and conduct of various experiments on the same. It also deals with testing and calibration of various measuring systems. Course Objectives: 1. To study different measuring systems, 2. To perform testing and calibration of different gauges and measuring devices 3. To study different types of sensors and transducers Course Learning Outcomes: CO After the completion of the course the student should be level Descriptor COI Explain the working of different measuring devices. 2 Understanding CO2 Demonstrate testing and calibration of measuring systems. 2 Understanding CO3 Identify types of sensors and transducers. 3 Applying Co-PO Mapping: CO Poi PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PS01 PS02 PS03 CO-PO Mapping: CO 2 3 3 4 3 4 5 CO-PO1 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PS01 PS02 <td>Course</td> <td colspan="7">Course Pre-Requisite: Applied Mechanics, Engineering Physics</td>	Course	Course Pre-Requisite: Applied Mechanics, Engineering Physics													
and systems and conduct of various experiments on the same. It also deals with testing and calibration of various measuring systems. Course Objectives: 1. To study different measuring systems, 2. To perform testing and calibration of different gauges and measuring devices 3. To study different types of sensors and transducers Course Learning Outcomes: CO After the completion of the course the student should be level Descriptor CO1 Explain the working of different measuring devices. 2 Understanding CO2 Demonstrate testing and calibration of measuring systems. 2 Understanding CO3 Identify types of sensors and transducers. 3 Applying CO-PO Mapping:	Course	Course Description: This course deals with demonstration of different measuring devices													
calibration of various measuring systems. Course Objectives: 1. To study different measuring systems, 2. To perform testing and calibration of different gauges and measuring devices 3. To study different types of sensors and transducers Course Learning Outcomes: CO After the completion of the course the student should be level Descriptor CO1 Explain the working of different measuring devices. 2 Understanding CO2 Demonstrate testing and calibration of measuring systems. 2 Understanding CO3 Identify types of sensors and transducers. 3 Applying CO-PO Mapping: CO PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PS01 PS02 PS03 CO1 3 1 1 2 3 1 1 3 1 1 3 1 1 3 1 1 3 1 1 1 3 1 1 1 1 1 1 1 1 1 1 1 1 1	and sys	tems a	nd co	nduct	of var	ious e	xperin	nents	on the	same	. It also	deals	with t	esting a	ind
Course Objectives: 1.To study different measuring systems, 2. To perform testing and calibration of different gauges and measuring devices Course Learning Outcomes: Course the student should be Bloom's Cognitive level Descriptor COI Explain the working of different measuring devices. 2 Understanding CO2 Demonstrate testing and calibration of measuring systems. 2 Understanding CO-PO Mapping: Coo PO1 PS01 PS02 PS03 CO-PO Mapping: Teacher Assessment:	calibrat	ion of	variou	is mea	asuring	g syste	ems.								
1. To study different measuring systems, 2. To perform testing and calibration of different gauges and measuring devices 3. To study different types of sensors and transducers Course Learning Outcomes: CO After the completion of the course the student should be level Descriptor CO1 Explain the working of different measuring devices. 2 Understanding CO2 Demonstrate testing and calibration of measuring systems. 2 Understanding CO3 Identify types of sensors and transducers. 3 Applying CO-PO Mapping: CO PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PS01 PS02 PS03 CO1 3 0 1 2 3 1 1 3 1 1 1 3 1 1 3 1 1 1 3 1 1 1 3 1 1 1 3 1 1 1 3 1 1 1 1 1 1 1 1 1 1 1	Course	e Obje	ctives	:											
2. To perform testing and calibration of different gauges and measuring devices 3. To study different types of sensors and transducers Course Learning Outcomes: CO After the completion of the course the student should be able to Bloom's Cognitive level Descriptor CO1 Explain the working of different measuring devices. 2 Understanding CO2 Demonstrate testing and calibration of measuring systems. 2 Understanding CO3 Identify types of sensors and transducers. 3 Applying CO-PO Mapping: CO PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PS01 PS02 PS03 CO1 3 1 1 2 3 1 2 3 1 2 3 1 2 3 1 1 3 1 1 3 1 1 2 3 1 1 1 3 1 1 1 1 3 1 1 1 1 1 1 1 1 1 1 1 1	1.To stu	udy dif	fferent	meas	uring	systen	ns,								
3. To study different types of sensors and transducers Course Learning Outcomes: CO After the completion of the course the student should be level Descriptor CO1 Explain the working of different measuring devices. 2 Understanding CO2 Demonstrate testing and calibration of measuring systems. 2 Understanding CO3 Identify types of sensors and transducers. 3 Applying CO-PO Mapping: CO PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PS01 PS02 PS03 CO1 3 Image: Colspan="2">Image: Colspan="2">Co-PO Mapping: CO2 2 Image: Colspan="2">Image: Colspan="2">Colspan="2">PO10 PS01 PS02 PS03 CO1 3 Image: Colspan="2">Image: Colspan="2">Image: Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan= 2 CO2 2 Image: Colspan="2">Image: Colspan="2">Colspan= 2 3 Image: Colspan="2">Colspan= 2 3 Image: Colspan="2">Colspan= 2 3 Image: Colspan="2">Colspan= 2 3 Image: Colspan="2">Colspan= 2 Image: Colspan= 2 Colspan= 2 Image: Colspan= 2 <td>2. To p</td> <td>erform</td> <td>testin</td> <td>ig and</td> <td>calibr</td> <td>ation</td> <td>of diff</td> <td>ferent</td> <td>gauge</td> <td>s and</td> <td>measur</td> <td>ing de</td> <td>evices</td> <td></td> <td></td>	2. To p	erform	testin	ig and	calibr	ation	of diff	ferent	gauge	s and	measur	ing de	evices		
Course Learning Outcomes: Course Learning Outcomes: CO After the completion of the course the student should be level Descriptor CO1 Explain the working of different measuring devices. 2 Understanding CO2 Demonstrate testing and calibration of measuring systems. 2 Understanding CO3 Identify types of sensors and transducers. 3 Applying CO-PO Mapping: CO PO1 PO2 PO3 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PS01 PS02 PS03 CO-PO Mapping: CO PO1 PO2 PO3 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PS01 PS02 PS03 CO13 D 1 2 3 1 CO2 Q PO10 PS01 PS02 PS02 PS03 CO13 D 2 3 3 2 CO2 Q Q PO10 PS01 PS02 <thp< td=""><td>3. To st</td><td>udy di</td><td>fferen</td><td>t type</td><td>s of se</td><td>ensors</td><td>and tr</td><td>ansdu</td><td>cers</td><td></td><td></td><td></td><td></td><td></td><td></td></thp<>	3. To st	udy di	fferen	t type	s of se	ensors	and tr	ansdu	cers						
CO After the completion of the course the student should be able to Bloom's Cognitive level Descriptor CO1 Explain the working of different measuring devices. 2 Understanding CO2 Demonstrate testing and calibration of measuring systems. 2 Understanding CO2 Period FO2 PO8 PO9 PO10 PS01 PS02 PS03 CO-PO Mapping: CO PO1 PO2 PO3 PO4 PO5 PO10 PS01 PS02 PS03 CO1 2 PO4 PO5 PO10 PS01 PS02 PS03 CO1 3 Applying CO2 2 A CO2 PO3 PO4 PO5 PO10 PS01	Course	e Leari	ning (Dutco	mes:										
level Descriptor CO1 Explain the working of different measuring devices. 2 Understanding CO2 Demonstrate testing and calibration of measuring systems. 2 Understanding CO3 Identify types of sensors and transducers. 3 Applying CO-PO Mapping: CO PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PS01 PS02 PS03 CO1 3 - - - 3 -	CO	After	the c	omple	etion (of the	cours	e the	stude	nt sho	uld be	Blo	om's (Cognitiv	/e
CO1 Explain the working of different measuring devices. 2 Understanding CO2 Demonstrate testing and calibration of measuring systems. 2 Understanding CO3 Identify types of sensors and transducers. 3 Applying CO-PO Mapping: CO PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PS01 PS02 PS03 CO1 3 Image: CO2 2 3 Image: CO3 <		able	to	-								leve	el De	escriptor	r
CO2 Demonstrate testing and calibration of measuring systems. 2 Understanding CO3 Identify types of sensors and transducers. 3 Applying CO-PO Mapping: CO PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PS01 PS02 PS03 CO-PO Mapping: CO1 3 9 9 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PS01 PS02 PS03 CO1 3 9 9 10 3 1 1 3 1 1 1 3 1 1 1 3 1 1 1 3 1 1 1 3 1 1 1 3 1 1 1 3 1 1 1 1 3 1	CO1	Expla	ain the	work	ing of	differ	ent m	easuri	ng dev	vices.		2	Ur	derstan	ding
CO3 Identify types of sensors and transducers. 3 Applying CO-PO Mapping: CO <po mapping:<="" td=""> CO PO1 PO2 PO3 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PS01 PS02 PS03 CO1 3 1 1 1 3 1 1 3 1 1 1 3 1 1 1 3 1 <t< td=""><td>CO2</td><td>Demo</td><td>onstra</td><td>te testi</td><td>ing an</td><td>d calił</td><td>oration</td><td>n of m</td><td>easuri</td><td>ng sys</td><td>stems.</td><td>2</td><td>Ur</td><td>nderstan</td><td>ding</td></t<></po>	CO2	Demo	onstra	te testi	ing an	d calił	oration	n of m	easuri	ng sys	stems.	2	Ur	nderstan	ding
CO-PO Mapping: CO PO1 PO2 PO3 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PS01 PS02 PS03 CO1 3	CO3	Ident	ify typ	bes of	sensor	rs and	transc	lucers				3	Ap	plying	
CO-PO Mapping: CO PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PS01 PS02 PS03 CO1 3 1 1 1 1 3 1 1 1 3 1 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>1, 0</td><td>1</td></t<>														1, 0	1
CO-PO Mapping: CO PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PS01 PS02 PS03 CO1 3 1 1 2 3 1 1 3 1 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>															
C0 P01 P02 P03 P04 P05 P06 P07 P08 P09 P010 PS01 PS02 PS03 C01 3 1 1 1 1 1 3 1 1 1 1 3 1	CO-PC) Map	ping:												
CO POI POI POI POI POI PSOI PS		DO1	DO1	DOI	DO1	DO 4	DO5	DOC	DOT	DOQ	DOG	DO10	DCO1	DE O 2	DCO1
CO1 3 3 3 CO2 2 3 3 CO3 3 3 3 Assessments : 3 3 One component of In Semester Evaluation (ISE) . 3 Assessment Marks ISE 25 ISE is based on practical performance and Internal oral. Course Contents: Experiment No. 1: Assignment on Measurement systems and basic concepts of measurement methods. Experiment No. 2: Study of different types of Sensors and Transducers. 02 Hrs. Experiment No. 3: Angular speed measurement using, Photo-electric pick up. 02 Hrs. Experiment No. 4: Testing of Mechanical pressure gauge using Dead 02 Hrs.	<u>CO1</u>	3	PO2	P03	P03	PO4	P05	PU0	P0/	PUð	P09	POIU	2	P502	P\$05
CO3 2 3 CO3 3 3 CO3 3 3 Assessments: 3 One component of In Semester Evaluation (ISE) . Assessment Assessment Marks ISE 25 ISE is based on practical performance and Internal oral. Course Contents: Experiment No. 1: Assignment on Measurement systems and basic concepts of measurement methods. 02 Hrs. Experiment No. 2: Study of different types of Sensors and Transducers. 02 Hrs. Experiment No. 3: Angular speed measurement using, Photo-electric pick up. 02 Hrs. Experiment No. 4: Testing of Mechanical pressure gauge using Dead 02 Hrs.	$\frac{cor}{cor}$	$\frac{3}{2}$									2		3		-
Assessments : 13 Teacher Assessment: One component of In Semester Evaluation (ISE) . Assessment Marks ISE 25 ISE is based on practical performance and Internal oral. Course Contents: Experiment No. 1: Assignment on Measurement systems and basic concepts of measurement methods. 02 Hrs. Experiment No. 2: Study of different types of Sensors and Transducers. 02 Hrs. Experiment No. 3: Angular speed measurement using, Photo-electric pick up. 02 Hrs. Experiment No. 4: Testing of Mechanical pressure gauge using Dead 02 Hrs.	C02	2									2		3		
Assessments : Teacher Assessment: One component of In Semester Evaluation (ISE) . Assessment Marks ISE 25 ISE is based on practical performance and Internal oral. Course Contents: Experiment No. 1: Assignment on Measurement systems and basic concepts of measurement methods. Experiment No. 2: Study of different types of Sensors and Transducers. 02 Hrs. Experiment No. 3: Angular speed measurement using, Photo-electric pick up. 02 Hrs. Experiment No. 4: Testing of Mechanical pressure gauge using Dead 02 Hrs.	05	5											5		
Assessments : Teacher Assessment: One component of In Semester Evaluation (ISE) . Assessment Marks ISE 25 ISE is based on practical performance and Internal oral. Course Contents: Experiment No. 1: Assignment on Measurement systems and basic concepts of measurement methods. 02 Hrs. Experiment No. 2: Study of different types of Sensors and Transducers. 02 Hrs. Experiment No. 3: Angular speed measurement using, Photo-electric pick up and magnetic pick up. 02 Hrs. Experiment No. 4: Testing of Mechanical pressure gauge using Dead 02 Hrs.															
Assessments : Teacher Assessment: One component of In Semester Evaluation (ISE) . Assessment Marks ISE 25 ISE is based on practical performance and Internal oral. Course Contents: Experiment No. 1: Assignment on Measurement systems and basic concepts of measurement methods. Experiment No. 2: Study of different types of Sensors and Transducers. 02 Hrs. Experiment No. 3: Angular speed measurement using, Photo-electric pick up and magnetic pick up. 02 Hrs.															
Assessments : Teacher Assessment: One component of In Semester Evaluation (ISE) . Assessment Marks ISE 25 ISE is based on practical performance and Internal oral. Course Contents: Experiment No. 1: Assignment on Measurement systems and basic concepts of measurement methods. Experiment No. 2: Study of different types of Sensors and Transducers. 02 Hrs. Experiment No. 3: Angular speed measurement using, Photo-electric pick up and magnetic pick up. 02 Hrs.															
Assessments : Teacher Assessment: One component of In Semester Evaluation (ISE) . Assessment Marks ISE 25 ISE is based on practical performance and Internal oral. Course Contents: Experiment No. 1: Assignment on Measurement systems and basic concepts of measurement methods. Experiment No. 2: Study of different types of Sensors and Transducers. 02 Hrs. Experiment No. 3: Angular speed measurement using, Photo-electric pick up and magnetic pick up. 02 Hrs. Experiment No. 4: Testing of Mechanical pressure gauge using Dead 02 Hrs.															
Assessments : Teacher Assessment: One component of In Semester Evaluation (ISE) . Assessment Marks ISE 25 ISE is based on practical performance and Internal oral. Course Contents: Experiment No. 1: Assignment on Measurement systems and basic concepts of measurement methods. Experiment No. 2: Study of different types of Sensors and Transducers. 02 Hrs. Experiment No. 3: Angular speed measurement using, Photo-electric pick up. 02 Hrs. Experiment No. 4: Testing of Mechanical pressure gauge using Dead 02 Hrs.	Accord	monta													
Teacher Assessment: One component of In Semester Evaluation (ISE) . Assessment Marks ISE 25 ISE is based on practical performance and Internal oral. Course Contents: Experiment No. 1: Assignment on Measurement systems and basic concepts of measurement methods. Experiment No. 2: Study of different types of Sensors and Transducers. 02 Hrs. Experiment No. 3: Angular speed measurement using, Photo-electric pick up and magnetic pick up. 02 Hrs. Experiment No. 4: Testing of Mechanical pressure gauge using Dead 02 Hrs.	Topoho		•	nt.											
Assessment Marks ISE 25 ISE is based on practical performance and Internal oral. Course Contents: Experiment No. 1: Assignment on Measurement systems and basic concepts of measurement methods. 02 Hrs. Experiment No. 2: Study of different types of Sensors and Transducers. 02 Hrs. Experiment No. 3: Angular speed measurement using, Photo-electric pick up and magnetic pick up. 02 Hrs. Experiment No. 4: Testing of Mechanical pressure gauge using Dead 02 Hrs.	One co	mpone	nt of	III. In San	nector	Evalu	ation	(ISE)							
Assessment IMarks ISE 25 ISE is based on practical performance and Internal oral. Course Contents: Experiment No. 1: Assignment on Measurement systems and basic concepts of measurement methods. 02 Hrs. Experiment No. 2: Study of different types of Sensors and Transducers. 02 Hrs. Experiment No. 3: Angular speed measurement using, Photo-electric pick up and magnetic pick up. 02 Hrs. Experiment No. 4: Testing of Mechanical pressure gauge using Dead 02 Hrs.		ment	int OI 1		lester	Lvaiu	ation		Narke						
ISE 2.5 ISE is based on practical performance and Internal oral. Course Contents: Experiment No. 1: Assignment on Measurement systems and basic concepts of measurement methods. Experiment No. 2: Study of different types of Sensors and Transducers. 02 Hrs. Experiment No. 3: Angular speed measurement using, Photo-electric pick up and magnetic pick up. Experiment No. 4: Testing of Mechanical pressure gauge using Dead 02 Hrs.	ISE	sment						2	5						
Course Contents: Experiment No. 1: Assignment on Measurement systems and basic concepts of measurement methods. Experiment No. 2: Study of different types of Sensors and Transducers. 02 Hrs. Experiment No. 3: Angular speed measurement using, Photo-electric pick up and magnetic pick up. Experiment No. 4: Testing of Mechanical pressure gauge using Dead 02 Hrs.		and a	n nro	otical	norfor	monac	and 1	[ntorn:	J al aral						
Course Contents:Experiment No. 1: Assignment on Measurement systems and basic02 Hrs.concepts of measurement methods.02 Hrs.Experiment No. 2: Study of different types of Sensors and Transducers.02 Hrs.Experiment No. 3: Angular speed measurement using, Photo-electric02 Hrs.pick up and magnetic pick up.02 Hrs.Experiment No. 4: Testing of Mechanical pressure gauge using Dead02 Hrs.		ISE is based on practical performance and internal oral.													
Experiment No. 1: Assignment on Measurement systems and basic 02 Hrs. concepts of measurement methods. 02 Hrs. Experiment No. 2: Study of different types of Sensors and Transducers. 02 Hrs. Experiment No. 3: Angular speed measurement using, Photo-electric pick up and magnetic pick up. 02 Hrs. Experiment No. 4: Testing of Mechanical pressure gauge using Dead 02 Hrs.	Course			A a	~ : ~~~~						a and l			02 11	
Concepts of measurement methods.Image: Concepts of measurement methods.Experiment No. 2: Study of different types of Sensors and Transducers.02 Hrs.Experiment No. 3: Angular speed measurement using, Photo-electric pick up and magnetic pick up.02 Hrs.Experiment No. 4: Testing of Mechanical pressure gauge using Dead02 Hrs.	Experi	ment I	NO. 1:	AS	signm	ient of	n Mea	isuren	nent s	system	is and I	Dasic		02 Hrs	•
Experiment No. 2: Study of different types of Sensors and Transducers.02 Hrs.Experiment No. 3: Angular speed measurement using, Photo-electric pick up and magnetic pick up.02 Hrs.Experiment No. 4: Testing of Mechanical pressure gauge using Dead02 Hrs.	concepts of measurement methods.														
Experiment No. 3: Angular speed measurement using, Photo-electric02 Hrs.pick up and magnetic pick up.02 Hrs.Experiment No. 4: Testing of Mechanical pressure gauge using Dead02 Hrs.	Experi	Experiment No. 2: Study of different types of Sensors and Transducers.02 Hrs.						•							
pick up and magnetic pick up.	Experi	ment 1	No. 3:	An	gular	speed	l mea	suren	nent u	sing.	Photo-	electr	ic	02 Hrs	
Experiment No. 4 Testing of Mechanical pressure gauge using Dead 02 Hrs	pick up	and 1	magno	etic pi	ck up	•							-		-
	Experi	ment 1	No. 4.	Te	sting	of Me	chani	cal nr	essur	e gano	e usin	o Dea	d	02 Hrs	

weight pressure gauge tester.	
Experiment No. 5: Measurement of displacement using LVDT.	02 Hrs.
Experiment No. 6: Formation of Thermocouple tip and Calibration of Thermocouple.	02 Hrs.
Experiment No. 7: Measurement of temperature using Thermocouple RTD, and thermistors.	02 Hrs.
Experiment No. 8: Force and torque measurement using strain gauges.	02 Hrs.

Textbooks:

Mechanical Measurement- Beckwith and Buck, Prentice Hall of India, New Delhi.

2. Mechanical Measurement and Control – D.S. Kumar, Metropolitan Book Co.

Mechanical Measurements – Shirohi and Radha Krishnan H.C., New Age International, New Delhi.

3. Engineering Practices Laboratory Kannaiah, Scitech Publication.

References:

- 1. Measurement Systems DoebelinEmesto, McGraw Hill Publishing Co. New York.
- 2. Mechanical Measurement and Control A.K. Sawhney and P. Sawhney, DhanpatRaiand Co

3. Theory and design for mechanical measurements – Richard S. Figliola, Donald E. Beasley, Wiley India Edition.

Experiment wise Measurable students Learning Outcomes: Student will be able to

- 1. Explain the process of angular speed measurement using various devices.
- 2. Form thermocouple tip and calibrate the same.
- 3. Measure temperature using different temperature measuring devices.
- 4. Carry out testing of mechanical pressure gauge.
- 5. Carry out measurement of displacement.
- 6. Make use of strain gauge for force measurement
- 7. Explain the concept of Sensors and transducers

Title of the Course: HEAT TRANSFER LAB	L	Т	Р	Credit
Course Code:UMCH0533	-	-	2	1

Course Pre-Requisite: Differential calculus, Integral calculus, Fluid mechanics

Course Description: The course deals with various experiments related to conduction, convection and radiation mode of heat transfer so as to understand the fundamentals and application of governing equations used in heat transfer.

Course Objectives:

CLO1: To provide the students the fundamentals of conduction, convection and radiation. CLO2:To train students with good scientific and engineering breadth in the areas of heat transfer, so as to comprehend, analyze, design and create novel products and solutions for the real life problems

Course	e Learning Outcomes:				
CO	After the completion of the course the student should be	Bloom	Bloom's Cognitive		
	able to	level	Descriptor		
CO1	Explain fundamentals of Heat and Mass Transfer mechanisms.	2	Understanding		
CO2	Develop differential equations for Heat Transfer mechanisms.	3	Applying		
CO3	Analyze the performance of heat exchangers.	4	Analyzing		
CO4	Estimate the rate of heat transfer at specified temperature difference.	5	Evaluating		

CO-PO, PSO Mapping:

со	PO1	PO2	PO3	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PSO1	PSO2	PSO3
CO1	3	-	-	-	-	-	-	-	-	-	-	-	2	-	1
CO2	-	3	-	-	-	-	-	-	-	-	-	-	-	-	-
соз	-	3	-	-	-	-	-	-	2	-	-	-	3	2	-
CO4	_	3	-	-	-	-	-	-	-	_	_	1	3	2	-

Assessments :

Teacher Assessment:

One component of In Semester Evaluation (ISE) and one End Semester Examination (ESE) having 50%, and 50% weights respectively.

Assessment	Marks
ISE	50
ESE	50

ISE are based on practical performed/ Quiz/ Mini-Project assigned/ Presentation/ Group Discussion/ Internal oral etc.

ESE: Assessment is based on oral examination

Note: Experiment No. 1 to 10 shall be selected for the POE examination and All should be included in Journal.

Course Contents:	
Experiment No. 1:Thermal conductivity of insulating powder	02 Hrs.
Experiment No. 2: Heat transfer through lagged pipe	02 Hrs.
Experiment No. 3: Heat transfer through composite wall	02 Hrs.
Experiment No. 4: Heat transfer by natural convection	02 Hrs.
Experiment No. 5: Emissivity measurement apparatus	02 Hrs.
Experiment No. 6: Stefan -Boltzmann apparatus	02 Hrs.
Experiment No. 7: Parallel and counter flow heat exchanger	02 Hrs.
Experiment No. 8: Heat transfer by forced convection	02 Hrs.
Experiment No. 9: Heat transfer through pin fin	02 Hrs.
Experiment No. 10: Heat pipe demonstration	02 Hrs.
Experiment No. 11: Study and Demonstration of Drop wise and Film wise Condensation	02 Hrs.
Experiment No. 12: Study and Demonstration of Pool Boiling and Forced Boiling.	02 Hrs.
Experiment No. 13: Heat Transfer Design Mini Project	
Textbooks: 1. Heat Transfer: A Practical Approach, Yunus A. Cengel, McGraw-Hill H	igher Education;

2 edition

2. Fundamentals of Heat & Mass Transfer ,7th Edition, Frank P. Incropera, Wiley.

3. A Course in Heat and Mass Transfer,: S. C. Arora (Author), S.

Domkundwar (Author), Anand V. Domkundwar

4 Heat and Mass transfer: J Holman (Author), Souvik Bhattacharyya , McGraw Hill Education; 10 edition

References:

1 Fundamentals of Engineering Heat and mass trasnfer, R C Sachdeva

2. Heat And Mass Transfer, Data Book, C.P. Kothandaraman, New Age International Private Limited; Ninth edition.

Experiment wise Measurable students Learning Outcomes: At the end of each experiment the students will be able to

- 1. Determine the thermal conductivity of insulating powder.
- 2. Determine the thermal conductivity of insulating material in lagged pipe
- 3. Determine the equivalent thermal conductivity and thermal resistance of insulating powder.
- 4. Determine the heat transfer coefficient in natural convection of vertical cylinder.
- 5. Determine the emissivity of given grey plate.
- 6. Determine the stefan-boltzmann constant experimentally.
- 7. Determine the LMTD, effectiveness of parallel and counter flow heat exchanger.
- 8. Determine the heat transfer coefficient in forced convection.
- 9. Determine the effectiveness and efficiency of pin fin.
- 10. Demonstrate the working principle of heat pipe
- 11. Demonstrate Drop wise and Film wise Condensation
- 12. Explain Pool Boiling and Forced Boiling Phenomenon
- 13. Develop a mini project on heat transfer.

Title o	f the	Cour	se: Dy	ynami	cs of]	Mach	ines L	/ab				L	Τ	Р	Credit
Course Code: UMCH0534											-	-	2	1	
Course Pre-Requisite: Applied Mechanics, Engineering Physics, Kinematics of															
Machi	Machines.														
Course	Course Description:														
This course is an introduction to the dynamics and Vibrations of Lumped-Parameter models of															
Mechanical Systems. Topics covered include Inertia forces and torques in mechanisms. Balancing of															
multi-c	multi-cylinder in-line engines. Balancing of radial and V- engines. Gyroscopic motion: simple theory														
of gyro	of gyroscopic couple, gyroscopic effects in machinery, applications of gyroscopes. Fluctuation of														
energy	and	speed	in mac	chines:	crank	-effort	t and t	urning	mom	ent dia	gran	ns 11	n flyv	heels.	Free and
to torsi	vibra	uons o vibrotic	n Vil	rotion	of sin	alo do	system	s with froode	and w		visco	ous nd r	uamp: vithou	ng. m t domn	ing
Course				Jiation	01 SIII	gie ueg		meeuc	nn syst	CIIIS W	iui a	nu v	viinou	t uamp	ing.
		the year	es:		f good	, troin	h	fortr	nomi	nion o	f m	otio	nond	nouvo	
1. Alla	iyze		nous i	spes (n gear	u ann		$\frac{101}{2}$	ansins	sion or	n m ad tu			powe	dia aram
2. Stud	ly the	d on ob	wro th	eneci nroh	loma d	cilicit	onoina	o piano	toru or	siip ai	nu u		ng mo		Jiagi aiii.
	y and		yze m			ni Uala	ancing	g UI FO	ary ar		proc	all	ig ma	3262	
4. Stud	y 101	ce ana	uysis (pie m	ecnani	isins a	na dal	ancing	5					
5. Stud	ly bas	sic cor	icepts	OI VIC	ration	anary	/\$1\$								
Course	e Lea	arning	g Outo	comes	:										
CO	Aft	ter the	com	pletion	n of th	e cou	rse th	e stud	lent sł	nould	be	Blo	oom's	Cogn	itive
	abl	le to										lev	rel I	Descrip	otor
CO1	Def	fine var	rious te	ermino	logy re	elated t	to gear	train,	flywhe	el,		3	1	Applyi	ng
	gyr	oscope	and v	ibratio	n.										0
CO2	Ind	entify	the va	arious	mecha	anism	and it	s com	ponen	ts.		3	1	Applyi	ng
CO3	Ap	ply an	alytica	al forn	nulae	to sim	ple me	echani	sms to)		3	1	Applyi	ng
	cal	culate	design	n para	meters	5.									
CO4	An	alyze o	lynam	nics of	simpl	le mec	hanisı	ns.				4	1	Analyz	e
CO-PO) Ma	apping	3:												
CO	PO1	PO2	PO3	PO3	PO4	PO5	PO6	PO7	PO8	PO9	POI	0	PSO1	PSO2	PSO3
COI	3														
CO2	2	2	1												
CO3	2	2	2										1		1
CO4		3	2	1									2		2
Assess	men	ts :													
Teache	er As	ssessm	ent:												
One co	mpo	nent o	f In Se	emeste	er Eva	luatio	n (ISE) and	one Ei	nd Sen	nest	er E	xami	nation	(ESE)
having	50%	, and	50% v	veight	s resp	ective	lv.	/							
Asses	smer	nt		0			5	Mark	S						
ISE	ISE 25														
ESE	ESE(POE) 25														
ISE are	$\frac{2}{2}$	ed on 1	practic	cal ner	forme	d/ PR	Lacti	$\frac{-c}{vitv/0}$	uiz/ P	resent	ation	\sqrt{G}	roup	Discus	sion/
Interna	l ora	l etc.		- P • 1				· ••)' ×					- ~ ~ P		
ESE: A	ESE: Assessment is based on Practical oral examination														

Laboratory Contents.	
Experiment No 1:- Experiment on Enjoyclic Gear Train	02Hrs
Aim & Objectives: To study various types of gear trains and analysis of Epicyclic	021115.
Gear Train	
Outcomes: Able to analyze the Epicyclic Gear Train	
Experimentation: Use of Tabular method for the Analysis of gear train model	
available in laboratory	
Results and Discussions: Determination of speeds of different wheels in gear train	
Experiment No. 2:- Experiment on Cyroscope	02 Hrs
$\Delta im \& Objectives: To Verify experimentally the principles of Gyroscope$	02 1113.
Outcomes: Able to describe effect of gyroscopic couple on various systems	
Experimentation: Verification of active and reactive gyroscopic couples values	
using experimental setup	
Results and Discussions: Calculation of active and reactive gyrosconic couples	
Experiment No. 3:- Determination of MI using Rifilar and Trifilar	02 Hrs
suspension system.	02 1115
Aim & Objectives: To determine radius of gyration of rectangular bar using Bifilar	
and Trifilar suspension method.	
Outcomes: Able to determine radius of gyration of components like Connecting	
rod.	
Experimentation: To determine value of Radius of gyration and M.I. of rectangular	
bar and Circular disc Experimentally.	
Results and Discussions: To verify the Radius of gyration and M.I. analytically	
and experimentally.	
Experiment No. 4:- Determination of M.I. of connecting rod by Compound	02 Hrs.
pendulum method.	
Aim & Objectives: To determine radius of gyration of connecting rod as	
Compound Pendulum.	
Outcomes: Able to determine radius of gyration and M.I. of components like	
Connecting rod.	
Experimentation: To determine value of Radius of gyration and M.I. of connecting	
rod Experimentally.	
Results and Discussions: To verify the Radius of gyration and M.I. analytically	
and experimentally.	
Experiment No. 5:- Experiment on Balancing of rotary masses (Static and	02 Hrs.
Dynamic).	
Aim & Objectives: To observe the principles of static and dynamic balancing.	
Outcomes: Able to analyze rotary system for static and dynamic balancing.	
Experimentation: To arrange the given masses in Angular and linear positions for	
complete static and Dynamic balance.	
Results and Discussions: To find Angular and linear positions of masses	
analytically and to verify the results.	
Experiment No. 6:- Experiment on equivalent spring mass system.	02 Hrs.
Aim & Objectives: To determine Natural Frequency of equivalent spring mass	
avetam	1

Outcomes: Able to determine Natural frequency experimentally.						
Experimentation: Determination of time period and natural frequency.						
Results and Discussions: Comparison between Analytical and Experimental						
natural Frequency.						
Experiment No.7:-Determination of logarithmic decrement for single DOF	02 Hrs.					
damped system						
Aim & Objectives: To determine logarithmic decrement for Torsionally vibratory						
system.						
Outcomes: Able to analyze effect of damping on vibratory system						
Experimentation: Plotting the logarithmic decrement of Torsionally vibratory						
system.						
Results and Discussions: calculation of damping coefficient for vibrating systems.						
Experiment No. 8:- Experiment on study of forced vibration characteristics	02 Hrs.					
Aim & Objectives: To study effect of exciting force on characteristics of						
vibrations						
Outcomes: Able to determine forced vibration characteristics like Amplitude and						
Frequency.						
Experimentation: To plot the graph Amplitude vs. Time for forced vibrations						
Results and Discussions: Determination of Maximum Amplitude and Natural						
Frequency for the Systems subjected to forced vibrations.						
Experiment No. 9:- Experiment on Whirling of Shaft	02 Hrs.					
Aim & Objectives: To study whirling of shafts						
Outcomes: Able to measure speed of shaft at which whirling takes place						
Experimentation: To measure speed of rotating shaft which is whirling.						
Results and Discussions: To measure critical speed of whirling.						
Experiment No. 10:- Study and experiment on Vibration measuring	02 Hrs.					
Instrument						
Aim & Objectives: To study vibration measuring instruments used for						
measurement of vibration parameters.						
Outcomes: Able to measure vibration parameters (Displacement, Velocity,						
Acceleration and Frequency)						
Experimentation: To measure vibrations imposed to the frame of rotating shaft.						
Results and Discussions: To measure vibration parameters.						
Experiment No.11:- Industrial visit based on above syllabus.	02 Hrs.					
Aim & Objectives: To make students acquainted to balancing of components like						
Gears, Pulleys used in Industry.						
Outcomes: Able to understand industrial procedure for Static and Dynamic						
Balancing.						
Experimentation: Demonstration of Measurement and removal of unbalance of						
Pulley using Balancing Machine.						
Textbooks:						
1. Ratan S.S, "Theory of Machines", Tata McGraw Hill, New Delhi, 3rd Edition, 20	11.					
2. Sadhu Singh,"Theory of Machines", Pearson Education, 2nd Edition, 2009						
3. H. G. Phakatkar, "Theory of Machines I", Edition 2009. Nirali Publication, 5th Edition 200						
4. Mechanical Vibrations by Grover G.K., Nemchand Publications.						
References:						

- 1. Hamilton H Mabie and Charles F Reinholtz, (1987), "Mechanisms and Dynamics of Machinery", Fourth Edition, John-Wiley and Sons, Inc., New York.
- 2. Ghosh A. and Mallick A.K., (1988), "Theory of Mechanisms and Machines", Affiliated East-West Press Pvt. Ltd., New Delhi.
- 3. William T Thomson, Marie Dillon Dahleh and Chandramouli Padmanabhan, (2004), "Theory of Vibration with applications", Fifth Edition, Pearson Education Publishers.
- 4. Theory of Machines by Dr. V.P.Singh, Dhanpat Rai Publications.
- 5. Theory of Machines by Ballaney, Khanna Publications.
- 6. Mechanical Vibrations by S.S.Rao, Pearson Education Publications
- 7. Theory of vibrations with applications by W.T. Thomson (CBS Publications)
- 8. Kinematics, Dynamics and Design of Machinery by Walidron, Wiley India Publi.

9. Theory of Vibration with applications by W.T.Thomson M.D.Dahleh.C.Padmanabhan Pearson Education

Title of	f the Course: Metrology and Quality Control Lab	LT	Р	Credit								
Course	e Code: UMCH0541	0 0	2	1								
Course	Pre-Requisite: Basic Knowledge of different units, type	s of erro	rs in me	asurement and bas	sic							
electric	al components with their principle. Basic knowledge	of scale	, scale	factor and differe	ent							
measur	measurement with units. Also knowledge of Basics of Geometrical Dimensional Tolerances, limit, fits											
Course Description:												
The course integrates measurements of industrial parts with various mechanical and electronic												
measur	ing instruments and their usage.											
Course	e Objectives:											
The ob	jective of this course is to make the student aware of:											
1.	To develop students knowledge of basics of Measurement	s, Metrol	bgy and i	measuring devices.								
2.	To know the concepts of various measurement systems &	standards	with reg	gards to realistic								
	applications.											
3.	The application of principle of metrology and measuremen	nts in indi	istries.									
Course	Learning Outcomer											
Course	e Learning Outcomes:											
CO	After the completion of the course the student should	be Bloc	m's Cog	nitive								
	able to	leve	level Descriptor									
CO1	List various geometrical tolerances used in production	1	Reme	embering								
	drawing			-								
CO2	Explain the significance of measurement system, errors,	2	Unde	rstanding								
	calibration of measuring devices											
<u> </u>												
CO3	Demonstrate use of metrological tools for linear, angular	2	Unde	rstanding								
	measurements											
COA	Evaluin the basics of standards of measurement limits f	E4a 0	I In de	unter din e								
004	Explain the basics of standards of measurement, limits, f	$11S \mid 2$	Unde	rstanding								
	& tolerances industrial applications											
C05	Analyze Manufacturing process with the help of Control	Δ	Anals	zing								
	Charts and Process Canability	-	Analy									
	Charts and Frocess Capability											

CO-PO Mapping:

CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	2			1	2								1	2	2
CO2	2	2	2	2	2		1						3		
CO3	2	1		2	2		1						3	2	
CO4	2	2	2	2			1						3		
CO5	2	2		2	2		1						3	2	

Assessments :

Teacher Assessment:							
One component of In Semester Evaluation (I	(SE) and one End Semester Examination (ESE) ha	iving					
50% and 50% weights respectively		8					
Assessment	Marks						
ISE	50						
FSF	50						
ISE are based on practical performed/ Ouiz/	Mini Project assigned/Presentation/Group Discu	asion/					
Internal oral ata	Winn-Project assigned/ Presentation/ Group Discu	1881011/					
ESE: Assassment is based on oral examination	on and the second se						
ESE. Assessment is based on oral examination	011						
Course Contents:							
Experiment No. 1: Study & Use of variou	is linear measuring instruments (Vernier and	2Hrs.					
micrometers)	6						
Aim and Objectives:							
Outcomes: Demonstrate use of linear Measure	uring Instruments						
Theoretical Background:							
Experimentation: Use of instrument. calibration	ation, Measurement and Calculation with						
Interpretation	······································						
Results and Discussions:							
Conclusion:							
Experiment No. 2: Calibration of Dial Ind	dicator using slip gauge	2 Hrs					
Outcomes: Demonstrate calibration process	dicutor using sup gudge.	2 1115.					
Theoretical Background : Calibration need	and importance						
Experimentation : Use of instrument calibration	ation Measurement and Calculation with						
Interpretation	ation, measurement and curculation with						
Results and Discussions:							
Conclusion:							
Experiment No. 3: Study and use of mech	hanical & pneumatic comparator	2Hrs.					
Outcomes: Demonstrate use of comparators							
Theoretical Background: Construction & V	Vorking of comparators						
Experimentation: Use of instrument, calibration	ation . Measurement and Calculation with						
Interpretation							
Results and Discussions.							
Conclusion:							
Experiment No. 4: Study & use of Bevel	protractor and Sine Bar for measurement of	2 Hrs					
Angle.	restation and sine bar for measurement of	- 1115.					
Outcomes: Demonstrate use of Angle Measure	uring Instruments						
Theoretical Background: Construction & V	Norking of angle measuring instruments						
Experimentation: Use of instrument calibration	ation Measurement and Calculation with						
Interpretation	ation, mousurement and calculation with						
Results and Discussions:							
Conclusion:							
Experiment No. 5: Measurements of Scre	ew thread parameters using two wire method	2 Hrs					
Outcomes:	an and a parameters using two who moniou	<i>2</i> 1115.					
Theoretical Background:							
Experimentation: Use of instrument calibration	ation Measurement and Calculation with						
Interpretation	ation, mousurement and Calculation with						
Results and Discussions.							
Conclusion.							
Experiment No. 6 Measurement of gear	tooth thickness using year tooth verinier caliper	2 Hrs					
Experiment 100. 0 Weasurement of gear	tooth unexitess using gear tooth verniter earlper.	<i>2</i> 1115.					
Outcomes: Demonstrate use of Gear Measuring Instruments							
--	-----------	--	--	--	--	--	--
Theoretical Background:							
Experimentation: Use of instrument, calibration, Measurement and Calculation with							
Interpretation							
Results and Discussions:							
Conclusion:							
Experiment No. 7: Study & use of Variable (X-Bar) chart							
Outcomes: Demonstrate use of Gear Measuring Instruments							
Theoretical Background: Statistical concepts, Control charts							
Experimentation: Data collection, use of statistical techniques, data analysis, calculation,							
plotting of graph with interpretation							
Results and Discussions:							
Conclusion:							
Experiment No. 8: Study & use of Attribute (P) chart	2 Hrs.						
Outcomes: Demonstrate use of Gear Measuring Instruments							
Theoretical Background: Statistical concepts, Control charts							
Experimentation: Data collection, use of statistical techniques, data analysis, calculation,							
plotting of graph with interpretation							
Results and Discussions:							
Conclusion:							
Textbooks:							
1. R.K. Jain, "Engineering Metrology", Khanna Publisher,							
2. I.C. Gupta, "Engineering Metrology", Dhanpat Rai Publications.,							
3 N Sidheshwar P Kannajah "Machie Drawing" TATA Magraw hill 2009							
A Anand Bewoor Vinay Kulkarni "Metrology & Measurement" The McGraw-Hill Comp							
4. Analia Dewool, Villay Kulkarili, Wichology & Wicdsurement I in Weenaw-Tim Comp.							
5. B.C. Nakara & K. K. Choudhan, Instrumentation Measurement & Analysis, TATA Magrav	V						
6. Quality Control by Anand Beoor & Vinay Kulkarni Wiley India PVT.Ltd.							
References:							
1. "Engineering Metrology", I.C. GUPTA, DhanpatRai and Sons, 1988, 2nd Edition.							
2. "Practical Engineering Metrology", Sharp K.W.B. Pitman, London, 1973, 1st Edition.							
3. Beckwith T.G, and N. Lewis Buck, Mechanical Measurements, Addison Wesley, 1991,5th ed	ition,						
4. N.V Raghavendra and L. Krishnamurthy, Engineering Metrology and Measurements, Oxford							
University Press 2014							
5 Serone Kalnakijan and Steven P. Schmid Manufacturing Engineering & Technology Dearso	n Sixth						
5. Scrope Kalpakjian and Steven K. Schnind, Manufacturing, Engineering & Technology, Tearso	II, SIXUI						
Existence Existe							
1 Students are able to select proper instrument for particular application							
2. Students are able to calibrate instrument							
2. Students are able to canorate instrument 3. Students will demonstrate use of pneumatic and mechanical comparator							
 Students will demonstrate use of Bevel protractor and Sine har 							
 Students will demonstrate use of floating carriage micrometer & two wire method for 							
measurement of thread diameter							
6 Students will demonstrate use of Revel protractor and Sine bar							
7 Students will construct and interpret the control charts for variable data							
8 Students will construct and interpret the control charts for attribute data.							
o. Statemas will construct and interpret the control charts for autione data							

Title of the Course: Machine Design	L	Т	Р	Credit
Course Code:UMCH0601	3	-	-	3

Course Pre-Requisite:

Machine Design I, Analysis of Mechanical Elements,

Course Description:

The Machine design course aims to acquire knowledge of designing procedures of transmission elements and mechanical systems. The design Engineer requires selecting standard components such as rolling contact bearings and sliding contact bearings. The knowledge of Machine design will enable students to understand the procedures of selection of bearings, design the mechanical components against fluctuating load. This course aims to understand design procedure of the transmission elements.

Course Objectives:

- 1. Analyze the gears with respect to strength point of view.
- 2. Design of components subjected to dynamic load.
- 3. Design up to two stage gear box
- 4. Measure design of parameters of mechanical systems
- 5. Formulate design parameters of practical problems

Course Learning Outcomes:

CO	After the completion of the course the student should be	Bloom's Cognitive		
	able to	level	Descriptor	
CO1	Explain fundamental principles of fatigue and stress concentration in design of components	II	Understanding	
CO2	Identify parameters required for design of mechanical components	III	Applying	
CO3	Determine the design parameters of mechanical components and mechanical systems	V	Evaluating	
CO4	Design of power transmission elements	VI	Creating	

CO-PO-PSO Mapping:

СО	PO1	PO2	PO3	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PSO1	PSO2	PSO3
CO1	3	-	-	-	-	-	-	-	-		-	1	-	-
CO2	2	2	1	1	-	-		-	-	-	-	1	-	-
CO3	2	2	1	1	-	-	-	-	-	-	-	1	-	
CO4	-	2	2	1	-	-	-	-	-	-	-	1	-	-

Assessments :

Teacher Assessment:

Two components of in Semester Evaluation (ISE), One Mid Semester Examination (MSE) and one End Semester Examination (ESE) having 20%, 30% and 50% weights respectively.

Assessment	Marks
ISE 1	10

MSE	30				
ISE 2	10				
ESE	50				
ISE 1 and ISE 2 are based on assignment/declared to	est/quiz/seminar/Group Discussions etc.				
MSE: Assessment is based on 50% of course conter	nt (Normally first three modules)				
ESE: Assessment is based on 100% course content	with 60-70% weightage for course content				
(normally last three modules) covered after MSE.					
Course Contents:					
Unit 1:- Design for fluctuating loads Stress concentration, fluctuating stresses, S-N. dia notch sensitivity, endurance strength- modifying under reversed stresses, cumulative damage in diagrams, modified Goodman diagram, fatigue design	agram under fatigue load, endurance limit, factors, design for finite and infinite life fatigue failure, Soderberg and Goodman gn for components under combined stresses	05 Hrs.			
Unit 2: Design of bearings i) Introduction to Tribological consideration in d	esign :				
Friction, wear, Lubrication.					
 ii) Koning Contact Bearing : Types, static and dynamic load capacities, Stribeck life relationship, Bearing life, Selection of bearin Roller bearing, Design for variable load and speed, than 90 %. Lubrication and mountings, dismounting iii) Sliding contact bearing : Types of sliding contact bearing, Basic theory, the equation, Raimondi and Boyd method relating Design consideration in hydrodynamic bearings, Te bearings 	a's equation, equivalent bearing load, load- ing from manufactures catalogue. Ball and Bearings with probability of survival other g and preloading of bearings hick and thin film lubrication, Reynolds's bearing variables, Sommerfield Number, emperature rise, Introduction to hydrostatic	09 Hrs.			
Unit 3: Aesthetic and Ergonomic consideration in Basic types of product forms, Designing for appea order with variety -concept of purpose style Ergonomic considerations- Relation between man, n of displays and controls. Practical examples of pro aesthetic design principles.	n Design rance, shape, Concept of unity- concept of and environment Aesthetic expressions. machine and environmental factors. Design ducts or equipments using ergonomics and	04 Hrs.			
Unit 4: Design of Spur and Helical gear					
 i) Spur Gear: Gear tooth loads, No. of teeth, face width, strength equation), dynamic tooth load, wear strength (Buck based on beam strength and wear strength. Methogears, construction of gears ii) Helical Gears: Terminology, Formative number beam & wear strength of helical gears, effective logears. 	a of gear teeth, static beam strength (Lewis sing ham's equation), Estimation of module ods of gear lubrication. Profile shifting of er of teeth in helical gears, force analysis, oad & design of helical gear, Herringbone	09 Hrs.			
Unit 5:Design of bevel and worm gear drive i) Bevel Gear :		09 Hrs.			

 Types of bevel gears, Straight tooth bevel gear terminology and geometrical relations. Guideline for selection of dimensions and minimum number of teeth, Force analysis, Mounting of bevel gear and bearing reactions, Beam and wear strength, Dynamic tooth load, Design of straight tooth bevel gears based on beam and wear strength. ii) Worm and worm wheel drive : Terminology and geometrical relations. Standard dimensions and recommendation of worm gearing, Force analysis, Friction, Efficiency of worm gear drive, Design of worm drive as per IS 7443-1974 based on beam strength and wear strength rating, Thermal consideration in worm drive. 					
Unit 6. Droggung Vaggal Dagign.					
Unit 6: Pressure Vessel Design:- Thin and thick cylinders; failure criteria of vessels; Lame's equation, Clavarino's and Birnie's equation, Autofrettage and compound cylinders, introduction to design of pressure vessels as per IS Codes. Shell and end closures	06 Hrs.				
Textbooks: 1. Bhandari V. B." Design of Machine Elements, Tata McGraw Hill New edition 2. Shigley J.E. and Mischke C.R. – "Mechanical Engineering Design" McGraw Hill Publ. Co. Lt	td.				
 References: 1. Black P.H. and O. Eugene Adams – "Machine Design" – McGraw Hill Book Co. Ltd. 2. Maleev V.L., Hartman J.B, "Mechanical Design of Machine", CBS Pub. & Distributors, 3. Design Data Handbook" – P.S.G. College of Technology, Coimbatore. 4. Hall A.S.; Holowenko A.R. and Laughlin H.G. – "Theory and Problems of Machine Design" Schaum's outline series. 					
Unit wise Measurable students Learning Outcomes:					
0					
1. Student should be able to know basic principles of design of mechanical component against fluctuating					

load

- 2. Student should be able to select and recommend suitable bearing for particular application
- Student should be able to screet and recommend suitable bearing for particula
 Student should be able to understand principles of aesthetics and ergonomics
 Student should be able to design spur and helical gear
 Student should be able to design bevel and worm gear
 Student should be able to design pressure vessels as per IS standard

Title of	the Course: Industrial Hydraulics and Pneumatics	L	Т	Р	Credit		
Course	e Code: UMCH0602	3			3		
Course	e Pre-Requisite: Preliminary knowledge of Fluid Mechanics						
Course Description: This course aims to impart knowledge of fluid power systems such as							
hydrau	lics and pneumatics w.r.t. their components, circuits and the	eir app	olicati	ons, c	lesign of		
system	and maintenance and troubleshooting of the system.						
Course	e Objectives:						
1. To s	tudy application of fluid mechanics and governing laws in	hydra	ulic a	ind pr	neumatic		
system	5.						
2. Stuc	ly of working principle of various components used in I	hydrau	ilic a	nd pr	neumatic		
system	5.						
3. Stud	y of ISO/JIC symbols of fluid power systems.						
4. Selec	ction of different components used in hydraulic and pneumati	c syst	ems.				
5. Desi	gn of hydraulic and pneumatic circuits.						
6. Indu	strial applications of hydraulic and pneumatic circuits.						
Course	e Learning Outcomes:						
CO	After the completion of the course the student should be	Blo	om's	Cogn	itive		
	able to	leve	el D	escrij	otor		
CO1	Explain the construction and working of various elements of hydraulic and pneumatic systems.	2	U	nders	tanding		
CO2	Make use of ISO/JIC symbols of fluid power systems to prepare fluid power circuits.	3		App	lying		
CO3	B Develop the hydraulic or pneumatic circuits as per the						
	given requirements.	3		App	yıng		
CO4	Identify troubleshooting and maintenance of hydraulic and	3		Ann	ving		
	pneumatic system.	5		түү	ynng		
CO-PC) Mapping:						

СО	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	P011	PO12	PSO1	PSO2	PSO3
CO1	2												2		2
CO2		2	2										2		2
CO3			3									3	3		3
CO4			3	3								2	3		3

Teacher Assessment:

Two components of In Semester Evaluation (ISE), One Mid Semester Examination (MSE) and one EndSemester Examination (ESE) having 20%, 30% and 50% weights respectively.

Assessment	Marks					
ISE 1	10					
MSE	30					
ISE 2	10					
ESE	50					
ISE 1 and ISE 2 are based on assignment/decla	red test/quiz/seminar/Group Discussions etc.					
MSE: Assessment is based on 50% of course content (Normally first three modules)						

ESE: Assessment is based on 100% course content with 60-70% weightage for course

content (normally last three modules) covered after MSE.	
Course Contents:	
Unit 1: Introduction to Hydraulics and Pneumatics	
Basic elements of fluid power system, Introduction to oil hydraulics and	7 Hrs.
pneumatics, their structure, advantages and limitations, applications of fluid power	
systems in various fields of engineering, comparison between hydraulic and	
pneumatic system, Service properties of hydraulic fluid, Types of hydraulic fluids,	
selection of fluid, ISO/JIC symbols of various elements of fluid power systems.	
Sources of contamination of hydraulic oil and its control, strainer, filter	
Unit 2: Elements of Hydraulic System	7 Hrs.
• Classification and types of seals, sealing material, Fluid conductors, heat-	
exchanger, hydraulic oil reservoir.	
• Hydraulic pumps: Types, classification, principle of working and constructional	
details of vane pumps, gear pumps, radial and axial piston pumps, power and	
efficiency calculations, characteristics curves, selection of pumps.	
 Actuators-linear and rotary, hydraulic motors, types of hydraulic cylinders and 	
their mountings. Calculation of piston velocity, thrust under static and dynamic	
applications. Design considerations for cylinders. Cushioning of cylinders.	
(Numerical treatment on pumps and hydraulic actuators).	
Unit 3: Control of Oil Hydraulic Power	7 Hrs.
 Requirements of Pressure control, direction control and flow control valves 	/ 111.5.
 Pressure control valves: Pressure relief valve, directly operated and pilot 	
operated pressure relief valve pressure reducing valve sequence valves	
counter balance valve	
Types of direction Control valves: 2/2 3/2 4/2 4/3 5/2 Open center close	
center tandem center manual operated mechanical operated solenoid pilot	
operated direction control valves, check valves	
 Flow control valves: temperature compensated pressure compensated 	
temperature and pressure compensated flow control valve	
 Accumulators intensifier and their applications (Numerical on accumulators) 	
Unit 4: Elements of Pneumatic System	7 Hrs
• Air compressors: Types niston screw and vane Selection criteria for air	/ 1115.
compressor piping layout Servicing of compressed air – ERL unit	
Direction control valves: (two way three way four way) check valves flow	
control valves, pressure control valves, speed regulators, quick exhaust valves	
time delay value shuttle value and twin pressure value. Solenoid operated pilot	
operated valves	
Pneumatic actuators Rotary and reciprocating cylinders_types and their	
mountings Air motor – types Comparison with hydraulic and electric motor	
Unit 5:Hydroulie and Pnoumatic Circuits	7Hrs
Hydraulic Circuits such as Speed control circuits (Mater in Mater out Bleed	/ 111 5.
off) Regenerative circuit rapid traverse and feed circuit automatic cylinder	
reciproceting circuits Sequence circuits Travel dependent and Pressure	
dependent cylinder synchronizing circuits counter balance circuit actuator	
locking circuit for hydraulic press unloading circuit	
Description of the second seco	
- rheumane Cheuns such as manual control of single acting and double acting avlinder. Speed control circuits. Impulse operation signatic Secures circuits of	
A + D + A = D + D + D + D + A type Time delay singuity in any system (D)	
A+D+A-D- and A+D+D-A- type, This delay circuit in pneumatics. OK control aircuit for pneumatic cylinder. AND control circuit for pneumatic cylinder.	
circuit for pneumatic cylinder, AND control circuit for pneumatic cylinder.	

Unit 6: System Design, maintenance and troubleshooting and servo controls7	Hrs.				
 Design procedure of hydraulic system for industrial applications including 					
points like load, pressure and flow calculations, sizing and selection of					
components, design constraints considerations, circuit preparation and					
determination of energy losses in system.					
 Maintenance, troubleshooting and safety of hydraulic system, 					
 Maintenance, troubleshooting and safety of pneumatic system, 					
 Introduction to Servo control, Hydraulic servo system for pressure and flow 					
control.					
 Electro-hydraulic system: Introduction, components and applications. 					
Textbooks:					
1. "Oil hydraulics Systems", S. R. Mujumdar, Tata McGraw Hill Publication.					
2. "Pneumatic Systems", S. R. Mujumdar- Tata McGraw Hill Publication.					
3. "Industrial Fluid Power", D. S. Pawaskar, Nishant Prakashan.					
4. "Hydraulics and Pneumatics", Shaikh and Khan, R.K. Publication.					
5. "Fluid Power with Application", Esposito, Pearson Education, 7th Edition.					
6. "Basic Hydraulic – Festo Manual"					
7. "Basic Pneumatic – Festo Manual"					
8. "Industrial Fluid Power", S.S. Kuber, Nirali Prakashan, 3rd Edition.					
9. "Hydraulics and Pnuematics", Dr. Anand Bewoor, Late S.K.Ponde, Nirali Prakashan.					
References:					
1. "Hydraulic and Pneumatic", H.L. Stewart, Industrial Press.					
2. "Industrial Hydraulic", J. J. Pipenger, Tata McGraw Hill.					
3. "Power Hydraulics", Goodwin 1st Edition.					
4. "Introduction to Hydraulic and Pneumatics", S. Ilango and V Soundararajan, Prentic	ce Hall				
of India, 2nd Edition.					
5. "Pneumatic Control", Joji P., Wiley., 1st Edition.					
6. "Fluid Power", Jagadeesha T. Wiley Publications.					
7. Eaton (Vickers) Manual.					
8. Product Manuals and books from Vickers/ Eaton, FESTO, SMC pneumatics.					
Unit wise Measurable students Learning Outcomes:					
1. Explain the layouts and basic components of hydraulic and pneumatic system.					
2. Explain construction and working of hydraulic pumps, actuators, accumulator	rs and				
intensifiers.					
3. Explain and demonstrate the construction and working of various types of control valve					
used in oil hydraulic system.					
4. Explain construction and working of various components of pneumatic system.					

- 5. Prepare and demonstrate various fluid power circuits with their applications.6. Develop and design hydraulic and pneumatic circuit.

Title of the Course: Internal Combustion Engines	L	Т	Р	Credit				
Course Code: UMCH0603	3	-	-	3				
Course Dro Deguigites Applied Thermodynamic Degis Machanical Engineering Heat Mass								

Course Pre-Requisite: Applied Thermodynamic, Basic Mechanical Engineering, Heat Mass Transfer.

Course Description:

The aim of this course is to provide students with a working knowledge and application of the fundamentals of how the operation of internal combustion engine affect their working, performance, fuel requirements and environmental impact on both SI and CI engines.

The focus is on explaining engine performance in terms of power, energy utilization and exhaust emissions, its relation to internal processes like combustion and gas exchange at varying engineoperating condition.

Course Objectives:

1. To enable the students to analyze the Ideal and actual air standard cycles and valve timing diagrams.

2. To make the students to study of fuel supply system in I.C. Engine.

3. To educate the student about combustion phenomenon and emission characteristics of engines.

4. To impart knowledge about various engine performance characteristics of engine.

5. Comprehend the different technological advances in engines and alternate fuels.

Course Learning Outcomes:

CO	After the completion of the course the student should be	Bloom's Cognitive			
	able to	level	Descriptor		
CO1	Explain fundamentals of I. C. Engine	II	Understanding		
CO2	Classify different systems if I. C. Engine	II	Understanding		
CO3	Solve numerical on I. C. Engine	III	Applying		
CO4	Measure performance parameters of I. C. Engine	III	Applying		

CO-PO-PSO Mapping:

CO	PO1	PO2	PO3	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PSO1	PSO2	PSO3
CO1	3											2		
CO2	3													
CO3		3												
CO4		3											2	

Assessments :

Teacher Assessment:

Two components of In Semester Evaluation (ISE), One Mid Semester Examination (MSE) and one EndSemester Examination (ESE) having 20%, 30% and 50% weights respectively.

Assessment	Marks						
ISE 1	10						
MSE	30						
ISE 2	10						
ESE	50						
ISE 1 and ISE 2 are based on assignment/declared test/quiz/seminar/Group Discussions etc.							

MSE: Assessment is based on 50% of course content (Normally first three modules)

ESE: Assessment is based on 100% course content with60-70% weightage for course content (normally last three modules) covered after MSE.

Course Contents:	
 Unit 1: Introduction to I. C. Engine Introduction, Classification of I. C. Engines, applications, Engine specifications. Engine Cycles: Engine cycles, Deviation of actual cycles from air standard cycles, Valve timing diagram for high and low speed engine, Port timing diagram. 	05 Hrs.
 Unit 2: Fuel Supply system for SI and CI Engine Fuel Systems for S.I. Engines: Engine fuel requirements, complete carburetor, Derivation for calculation of A/F ratio, Calculation of main dimensions of carburetors, Effect of altitude on Air fuel ratio. Electronic Petrol injection system (MPFI). Fuel Systems for C.I. Engines: Requirements of injection system, Types of injection systems – Individual pump, Common rail and Distributor systems, Unit injector, Types of fuel nozzles- single hole, multi hole, pintle, and pintaux. Governing of C.I. engines. Electronic diesel injection system. Calculations of main dimension of fuel injection system. 	09 Hrs.
 Unit 3: Combustion In I. C. Engine Combustion in S.I Engine Stages of combustion, Ignition lag, Flame propagation, Factors affecting flame speed, Abnormal combustion, Detonation – phenomena, causes & remedies, Requirements of combustion chambers of S.I. Engines and its types. Combustion in C.I Engine Stages of combustion, Delay period, Factors affecting delay period, Abnormal combustion- Diesel knock - phenomena, causes & remedies, comparison of abnormal combustion in S.I. and C.I. Engines Requirements of combustion chambers for C.I. Engines and its types. 	08 Hrs.
Unit 4: Performance Testing of I. C. Engine Performance parameters, I. S. Standard Code10000 (I to XI) to 10004 for testing of engines), Measurement of performance parameters like torque, power, Volumetric Efficiency, Mechanical Efficiency, BSFC, Brake and Indicated Thermal efficiencies. Numerical on Heat Balance Sheet and engine performance, Performance curves, Selection of IC Engine for different applications.	06 Hrs.
Unit 5: Engine Emission and control S.I. engine emission (HC, CO, NOx) Control methods- Evaporative (ELCD), Thermal, Catalytic converters, C.I. Engines Emission (CO, NOx, Smog, Particulate), Control methods- Chemical, EGR, Standard pollution Norms like EURO, Bharat, Introduction to alternative fuels for I.C. engines, Introduction to Supercharging and Turbo-charging.	06 Hrs.

Unit 6: Advance Technologies in I. C. Engine	06 Hrs.
Alterative Fuels	
Alcohol, hydrogen, Natural gas, Liquefied petroleum gas, Biodiesel, Biogas –	
merits and demerits.	
Recent Treads In I. C. Engine	
GDI Engine, HCCI Engine, VCR Engine, Variable Geometry Turbocharger,	
variable valve timing, Engine downsizing, Engine Management system.	

Textbooks:

- 1. "Internal Combustion Engines" Mathur and Sharma, Dhanpat Rai Publication, Delhi.
- 2. Internal Combustion Engines", V. Ganesan, Tata McGraw Hill Publication.
- 3. Internal Combustion Engines", Domkundwar, Dhanpat Rai Publication.
- 4. "Internal Combustion Engines", R. K. Rajput, SciTech Publication.

References:

1] "Internal Combustion Engines", J. B. Heywood, Tata McGraw Hill Publication .

2] "Internal Combustion Engines", Maleev, CBS Publication and Distributors.

3]"Internal Combustion Engines", Gills and Smith, Oxford and IBH Publishing Company 4] "Internal Combustion Engines Fundamentals", E. F. Obert, Harper and Row Publication, New York.

Unit wise Measurable students Learning Outcomes:

- 1. Describe the contractional detailing of IC engines and analyze the Ideal and Actual cycle.
- 2. Understand the working of fuel supply system for SI and CI engine.
- 3. Analyze various stages of combustion in SI and CI engine.
- 4. Plot performance characteristics curve during testing and prepare a performance report.
- 5. Student should able to know engine emission.
- 6. Understand advance technology in IC engine.

Title of the Course: Safety and Maintenance Engineering	L	Т	Р	Credit							
Course Code:UMCH0621	3	1	-	4							
Course Pre-Requisite: Preliminary knowledge of various types of ma	achines	and	introd	uction to							
functions of management											
Course Description: This course aims to impart knowledge of maintenance of equipment in											
industries. In order to survive and progress proper maintenance of equipment is necessary to be done											
in industry. This course provides information about wear, corrosion, lubrication, preventive											
maintenance; decision tree to diagnose faults, important provisions of	factor	ry act	, alig	nment of							
equipment etc. This course also provides basic knowledge and skills regard	ding m	ainter	ance p	problems,							
their causes and remedies in industries.											
Course Objectives:											
1. To understand safety engineering aspects in industry.											
2. To educate and train for safety in order to prevent causes and cost	of acci	dent.									
3. To understand the principles, functions and practices adapted in in	dustry	for th	e succ	essful							
management of maintenance activities.											
4. To understand the different maintenance categories like Preventive	e maint	enanc	e, con	dition							
monitoring and repair of machine elements.											
Course Learning Outcomes:											
CO After the completion of the course the student should be	Bloo	om's (Cognit	tive							
able to	leve	l D	escrip	tor							
CO1 Explain the importance of safety	II	U	nderst	anding							
CO2 Demonstrate various factories acts and rules related to											
employee's safety	II	U	nderst	anding							
CO3 Make use of preventive maintenance to carry out plant	III	A	pplyin	g							
maintenance											
CO4 Identify and avoid accidental hazards.	III	A	pplyin	g							
CO5 Choose appropriate method for reconditioning and retrofitting	* 7		1								
process of machine elements	v	E	valuati	ng							
CO-PO Mapping:											

со	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	P011	PO12	PSO1	PSO2	PSO3
CO1	2	2													
CO2	2	2													
CO3			3						2					2	
CO4			3											2	
CO5			2	3										2	

Teacher Assessment: \checkmark

Two components of In Semester Evaluation (ISE), One Mid Semester Examination (MSE) and one EndSemester Examination (ESE) having 20%, 30% and 50% weights respectively.

Assessment	Marks
ISE 1	10
MSE	30
ISE 2	10
ESE	50
ISE 1 and ISE 2 are based on assignment/declared	test/quiz/seminar/Group Discussions etc.
MSE: Assessment is based on 50% of course conte	nt (Normally first three modules)
ESE: Assessment is based on 100% course co	ntent with60-70% weightage for course content

(normally last three modules) covered after MSE.

Course Contents:	
Unit 1: Introduction to the development of industrial safety and management:	5Hrs.
History and development of Industrial safety: Implementation of factories act,	
Formation of various councils, Safety and productivity, Safety organizations. Safety	
committees, safety committee structure, Roll of management and roll of	
Government in Industrial safety, Safety analysis.	
Unit 2: Accident preventions, personal protective equipments:	8Hrs.
Personal protective equipment(PPE), safety in handling hand held electrical	
appliances tools and medical equipments, Survey the plant for locations and hazards,	
Fuse, circuit breakers and overload relays – protection against over voltage and under	
voltage - safe limits of amperage - voltage -safe distance from lines-capacity and	
protection of conductor-joints-and connections, overload and short circuit protection-no	
load protection-earth fault protection Part of body to be protected, Education and training	
in safety, Prevention causes and cost of accident, Housekeeping, First aid, Firefighting	
equipment, Accident reporting, Investigations, Industrial psychology in accident	
prevention, Safety trials.	
Unit 3: Safety Acts:	5 Hrs.
Features of Factory Act, Introduction of Explosive Act, Boiler Act,	
Workman's compensation Act, Industrial hygiene, Occupational safety, Diseases	
prevention, Ergonomics, Occupational diseases, stress, fatigue, health, safety and the	
physical environment, Engineering methods of controlling chemical hazards, safety and	
the physical environment, Control of industrial noise and protection against it, Code and	
regulations for worker safety and health. Introduction to OSHA, NSCI Safety Awards	
Scheme - An Overview. Introduction to SIL(Safety Integrity level). Types of hazardous	
waste and their disposal	
Unit 4: Principles of Maintenance planning:	7 Hrs.
Basic Principles of maintenance planning – Objectives and principles of	
planned maintenance activity. Safety Officer's Role in Maintenance Work. Importance	
and benefits of sound Maintenance systems – Reliability and machine availability,	
Equipment Life cycle, Measures for Maintenance Performance: Equipments breakdowns,	
Mean Time Between Failures, Mean Time To Repair, Factors of availability,	
Maintenance organization, Maintenance economics.	
Unit 5: Maintenance policies and preventive maintenance:	7Hrs.
Maintenance categories - Comparative merits of each category - Preventive	
maintenance, Maintenance schedules: Repair cycle, Principles and methods of	
lubrication, Fault Tree Analysis, Total Productive Maintenance: Methodology and	
Implementation	
Unit 6: Condition Monitoring:	7 Hrs.
Condition Monitoring: Cost comparison with and without Condition Monitoring,	
On-load testing and off load. Methods and instruments for Condition Monitoring,	
Temperature sensitive tapes, Pistol thermometers, wear-debris analysis, noise	
Vibration and harshness analysis of machines.	
Introduction to Internet of Things (IoT) and Industry 4.0- Applications and	
Advantages	
Text Books:	
1. Srivastava, S.K., "Industrial Maintenance Management", S. Chand and Co.	
2. Bhattacharya, S.N., "Installation, Servicing and Maintenance", S. Chand and Co.	
5. while Hammer, "Occupational Safety Management and Engineering", Prentice Hall	
Keierence Books:	
1. white, E.N., Maintenance Planning", Documentation, Gower Press	
2. Garg, M.K., Industrial Maintenance", S. Chand and Co.	
5. Fliggills, L.K., Wiaintenance Engineering Hand Dook", 5th Edition, McGraw Hill	
4. Athistong, Condition Monitoring, BSIKSA 5. Davies "Handbook of Condition Monitoring", Charges and Hall	
J. Davies, Hallouok of Condition Monitoring, Chapman and Hall	
U. Kay Astani, C., Industrial Safety and Health Ivianagement, 5th Edition, Prentice Hall 7, S.C. Michro, "Poliobility and Mointenance Engineering" New Are Dublishing to the	
1. S.C.IVIISIIIa, Kenaulity and Maintenance Engineering, New Age Publishing house	

Unit wise Measurable students Learning Outcomes:

1. To get familiar with implementation of factories act, formation of various councils, safety and productivity, safety organizations.

2. To be able to prevent accidental hazards by using personal protective equipments.

3. To understand different types of safety acts.

4 To be able to carry out periodic inspection in mechanical systems and plan preventive maintenance of major mechanical systems

5 To select appropriate recovery method for machine elements and explain reconditioning and retrofitting

Practicals:

- **1.** Study and demonstrate use of various types of tools. (Fix spanners, box spanners, ring spanners, allen keys, types of pliers, screw drivers, bearing puller, etc.)
- 2. Maintenance of any two from following. Batch may be divided in to two groups and each group may be given one case viz. Head stock, Tail stock, Feed box, Indexing head, Pump(Dismantle of given case, observe rules, follow sequence of dismantling operations, cleaning, inspection, measuring deviations, recovery methods, testing and assembling).
- 3. Prepare a preventive maintenance schedule of any workshop having- air compressors, car washing pumps, tyre changer, lifts, welding machines, and wheel alignment.
- 4. Demonstrate use of fire fighting and safety related equipments process

Title of	the C	ourse	: CON	MPUT	ATIC	ONAL	FLU	ID D	YNAN	AICS		L	Г	Р	0	redit
Course	Code	: UMC	CH0622	2								3	1	-		3
Course	Pre-Re	equisit	e: Flui	id Mee	hanic	s, Hea	t Tran	sfer, I	Elemei	ntary N	Numeri	cal An	alysi	is, Ol	DE, P	'DE
Course	Descr	riptior	1:	_												
Compu	tation	al flui	id dyn	amics	5 (CF]	D) is a	a branc	ch of f	luid n	nechan	ics that	t uses	num	erica	l ana	lysis
and data	a struc	tures t	o solv	e and	analy	ze pro	blems	that i	nvolvo	e fluid	flows.	Com	outer	s are	usec	l to
perform	the ca	alculat	ions r	equire	d to si	imulat	te the i	interac	ction c	of liqui	ds and	gases	with	1 surf	faces	
defined	by bo	undary	y cond	itions												
C																
Course	Ubjec	cuves:	: na lena	wladaa	hasa	acconti	al for a	nnlia	tion	faamn	utotiona	1 fluid	dunc	mio	to	
Equip si	ing flo	witti ti w prob	le KIIO	wieuge	base	essenti	al lor a	applica		comp	utationa	ii iiuiu	dyna	annes	5 10	
2. Provid	de the e	essentia	al num	erical l	backgr	round f	For solv	ving th	e parti	al diffe	rential e	equatio	ons go	overr	ing t	he fluid
flow.						0 001100 1			- purth			quan				10 11010
3. Devel	op stud	lents' s	kills o	f using	a com	merci	al softv	ware pa	ackage	;						
Course	Learr	ning ()utco 1	nes:												
CO	After	• the co	omplet	tion of	the co	ourse t	he stu	dent s	hould	be		Bloo	m's (Cogn	itive	
	able t	to										level	Ľ	Descri	iptor	
CO1	Build	flow	problei	n prop	erly w	ithin C	CFD co	ntext.				3	A	Apply	ing	
COA	T - 1		1:.1			1	•					4			_•	
02	Таке	part in	solid	modeli	ng and	1 mesn	ing.					4	P	Analy	zing	
CO3	Asses	s the ([¬] FD re	sults h	v com	narino	with	availab	le data	and	liscuss	5	F	Evalu	atino	
005	the fi	ndings		build t	y com	paring	, •• 1011 0	i v unuc	ie uuu	i, and c	1150055			27 414	ating	
		0														
CO-PO	.PSO	Mapr	oing:													
CO	PO1	PO2	PO3	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PSO	01 1	PSO2	PSO3
CO1	3	-	-	-	-	-	-	-	-	-	-	-	2	2	-	1
													_			
CO2	-	3	-	-	-	-	-	-	-	-	-	-	-		-	-
CO3	-	3	-	-	-	-	-	-	2	-	-	-	3	3	2	-
000																
Assessi	nents	:	. 4 .													
Teache	r Asse	ssmei			. F 1			0	N.T. 1 (ч	· · · E ·			MOT		1
I WO CO	mpone	Exami	In Se	mester	r Eval	uation	1(13E)), One	W110 S	Semes	ter Exa	minat	1011 (. 1	MSE	z) and	1 one
		схаш	matioi		2) nav	ing 20	<i>1</i> %, 30		1 30%	weigi	its tesp	ective	1y.			
Assess	sment							10	KS							
ISE I								20								
MSE 2								10								
ISE 2								10								
	-4 ICT	2	hazal	010 0-		ont/1	alarra								to.	
ISE I a	na ISE	2 are	based	on as	signm	ient/de	eclared	1 test/	Juiz/se		Group	DISC	ussic	ons e	IC.	
MSE: A	ssessr	nent 1	s base	a on 5	U% of	cours	se con	tent (N	vorma	ily firs	st three	modu	ues)			

ESE: Assessment is based on 100% course content with60-70% weightage for course content (normally last three modules) covered after MSE.

Course Contents:

UNIT 1:	07 Hrs.
Introduction to Computational Fluid Dynamics : Computational Fluid Dynamics: What,	
When, and Why?, CFD Applications, Numerical vs Analytical vs Experimental, Modeling vs	
Experimentation.	
Principles of Conservation: Reynolds transport theorem, Conservation of mass,	
Conservation of linear momentum: Navier-Stokes equation, Conservation of Energy,	
General scalar transport equation.	
Classification of Partial Differential Equations and Physical Behaviour: Mathematical	
byparbolic equations. Physical examples of alliptic parabolic and hyperbolic parabolic partial	
differential equations	
LINIT 2.	07 Hrs
Approximate Solutions of Differential Equations: Error Minimization Principles	07 111 5.
European Experimentation of differential Equations. Error Minimization of differential	
Functional involving higher order derivatives, Approximate solution of differential	
equations unough variational formulation, Boundary conditions in the variational	
form: Primary and secondary variables, Essential and natural boundary conditions,	
Approximate solutions of differential equations, Properties of variational form,	
weighted residual approach: trial function and weighting function, Requirement of	
trial function and weighting function, Least square method, Point Collocation	
method, Galerkin's method, Rayleigh-Ritz method	
UNIT 3:	06 Hrs.
Fundamentals of Discretisation: Pre-processing, Solution, Post-processing, Finite	
Element Method, Finite difference method, Well posed boundary value problem,	
Possible types of boundary conditions, Conservativeness, Boundedness,	
Transportiveness,	
Finite Volume Method: Some Conceptual Basics and Illustrations through 1-D	
Steady State Diffusion Problems: FV Discretisation of a 1-D steady state diffusion	
type problem, Implementation of boundary conditions	
UNIT 4:	08 Hrs.
Discretisation of Unsteady State Problems: 1-D unsteady state diffusion problems:	
implicit, fully explicit and Crank-Nicholson scheme. Consequences of time-discretisation in	
finite discretisation, Consistency, Stability, Convergence, Stability analysis of parabolic	
equations (1-D unsteady state diffusion problems), Stability analysis of parabolic equations	
(1-D unsteady state diffusion problems), Stability analysis of hyperbolic equations:	
Solution of Systems of Linear Algebraic Equations: Criteria for unique solution, infinite	
number of solutions and no solution, Solution techniques for systems of linear algebraic	
convergence Pete of convergence Pelevation methods, Gradient search methods; Steenest	
descent method and Conjugate gradient method	
LINIT 5.	06 Hrs
Discretisation of Convection-Diffusion Equations: A Finite Volume Approach:	00 111 5.
Einite volume discretisation of convection diffusion problem: Constalized	
convection diffusion formulation	
Discretisation of Naviar Stokes Equations: Discretisation of the Momentum	
Equation: SIMDLE Algorithm SIMDLED Algorithm	
Unstructured Crid Formulation: Discretisation of the Momentum Equation using	
unstructured grid	
	0.0
UNIT 0; What is there in implementing a CED and 2. The basis structure of a CED = 1	00 mrs.
what is there in implementing a CFD code:: The basic structure of a CFD code:	
re-processor, Solver and Post-processor, User-defined-subroutines, Solution to	
some basic problems in near transfer and fluid flow.	
Introduction to Turbulence Modeling: Important features of turbulent flow,	

Vorticity transport equation, Statistical representation of turbulent flows: Homogeneous turbulence and isotropic turbulence, General Properties of turbulent quantities, Reynolds average Navier stokes (RANS) equation, Closure problem in turbulence: Necessity of turbulence modeling, Different types of turbulence model: Eddy viscosity models, Mixing length model, Turbulent kinetic energy and dissipation, The κ - ϵ model, Advantages and disadvantages of κ - ϵ model, More twoequation models: RNG κ - ϵ model and κ - ω model, Reynolds stress model (RSM),Large eddy Simulation (LES),Direct numerical simulation (DNS)

Textbooks:

- 1. H. K. Versteeg & W. Malalasekera, An Introduction to Computational Fluid Dynamics, Longman Scientific & Technical.
- 2. John D. Anderson Jr., Computational Fluid Dynamics, McGraw Hill Book Company.
- 3. J. Blazek, Computational Fluid Dynamics: Principles and Applications, Elsevier.

References:

- 1. S. V. Patankar, Numerical Heat Transfer and Fluid Flow, McGraw-Hill.
- 2. T. J. Chung, Computational Fluid Dynamics, Cambridge University Press.
- 3. J. H. Ferziger and M. Peric, Computational Methods for Fluid Dynamics, Springer.
- 4. John C. Tannehill, Dale A. Anderson and Richard H. Pletcher, Computational Fluid Mechanics and Heat Transfer, Taylor & Francis.

Unit wise Measurable students Learning Outcomes:

- **1.** Graduates will be able to formulate equations of computational fluid dynamics.
- 2. Graduates will be able to solve differential equations of computational fluid dynamics.
- $\mathbf{3}$. Graduates will be able to discretise the computational fluid dynamics problem
- 4. Graduates will be able to discretise the Unsteady State Problems.
- 5 .Graduates will be able to discretise Convection-Diffusion Equations and Navier Stokes Equations
- 6. Graduates will be able to explain the fundamentals of Turbulence Modeling

Title of the Course: Operations Management		Т	Р	Credit
Course Code:UMCH0623	3	1	-	4
Course Pre-Requisite: Functions of Management				

Course Description:

Operations management focuses on carefully managing the processes to produce and distribute products and services. Major overall activities often include product creation, development, production and distribution. The course deals with all operations within the organization and the related activities including managing purchases, inventory control, quality control, storage, logistics and evaluations

Course Objectives:

1. To understand the strategic importance of Operations Management and how it can provide a competitive advantage in the marketplace

2. To develop knowledge of the issues related to facility layout& Material Handling system.

3. To develop MRP & ERP Modules for industry.

4. To apply advanced operations management tools to solve industrial problems

Course Learning Outcomes:

CO	After the completion of the course the student should be	Bloom's Cognitive			
	able to	level	Descriptor		
CO1	To classify the Operations management Strategy Framework	Π	Understanding		
CO2	To choose different facility & MHS for new plant layout.	III	Applying		
CO3	To apply the systematic approach for PPC	III	Applying		
CO4	To categorize and forecast the demands in Operational Activity.	IV	Analyzing		

CO-PO-PSO Mapping:

CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
C01	2														
CO2			3									2	3		
CO3			3									2	3		
CO4				3								2			

Assessments :

Teacher Assessment:

Two components of In Semester Evaluation (ISE), One Mid Semester Examination (MSE) and one End Semester Examination (ESE) having 20%, 30% and 50% weights respectively.

Assessment	Marks
ISE 1	10
MSE	30
ISE 2	10
ESE	50

ISE 1 and ISE 2 are based on assignment/declared test/quiz/seminar/Group Discussions etc.

MSE: Assessment is based on 50% of course content (Normally first three modules)

ESE: Assessment is based on 100% course content with60-70% weightage for course content (normally last three modules) covered after MSE.

Course Contents:

Unit 1:--- Introduction: An overview of Operations Management

6 Hrs.

					0		
Operations	Management:	Introduction	and o	overview,	Operations	Management	Strategy
framework,	understanding	similarities a	nd dif	fference ar	nong produc	cts, goods and	services,
historical ev	volution of ope	rations manag	gemen	nt-Changes	&Challeng	es	

Unit 2: Manufacturing system Design	6 Hrs.
Facilities Layout and Material Handling Strategy, Group Technology, Flexible	
manufacturing system, Assembly line balancing introduction to project Management-	
CPM PERT, Line of Balance (LOB)	
Unit 3: Production Planning & Control (PPC), Demand Forecasting	8 Hrs.
Demand Forecasting: Forecasting as a Planning Tool, Forecasting Time, Horizon,	
Sources of Data for forecasting, Accuracy of Forecast, Capacity Planning.	
Production Planning: Introduction to PLM, Aggregate production Planning, Alternatives	
for Managing Demand and Supply, Master Production Schedule, Capacity,	
Planning - Overview of MRP, CRP, DRP, MRP II, ERP, Introduction to quality tools	
(KANBANs, SMED, Kaizan, Poka Yoke, Zero defects.)	
Production Control: Scheduling, Loading, Scheduling of Job Shops and Floor Shops.	
Unit 4: Planning and managing operations	6 Hrs.
Value chain and Supply chain Management, Purchasing, vendor selection and material	
management, Just-in-Time Systems, Aggregate Operations Planning Scheduling,	
sequencing and dispatching	
Unit 5: Inventory Planning and Control: Continuous and Intermittent demand	8 Hrs.
System, concept of inventory, need for inventory, types of inventory - seasonal,	
decoupling, cyclic, pipeline, safety. Implications for Inventory Control Methods.	
Inventory Costs: Concept and behavior of ordering cost, carrying cost, shortage cost.	
EOQ: Basic EOQ Model - EOQ with discounts	
(Numerical treatment on Basic EOQ, EOQ with discounts & ABC), Inventory turns ratios,	
Fixed Order quantity Model - Periodic Review and Re-order Point)	
Unit 6: Advance operation management	6 Hrs.
Service Operations Management, Lean systems, Computer integrated manufacturing,	
Analytical tools for DSS(Decision Support Tools) for operations management.	
Introduction to Internet of Things (IoT) and Industry 4.0- Applications and	
Advantages	
Textbooks:	
1. "Industrial Engineering and Production Management", Martand Telsang, S Chand and	
Company New Delhi, (2009).	
2. Operations Management Theory & Practice by B. Mahadevan, Pearson, 2nd Edition.	
3. Production & Operations Management - Chary	
4. Production & Operations Management - Adam & Ebert	
5. Manufacturing & Operations Management - L.C.Jhamb	
6. Production and Operations Management Scitech Publications- Sushanta Tripathy	
7. Operations Management- K Shridhara Bhat Himalaya Publications	
References:	_
1] Aggarwal L.N, Parag Diwan (1997), Management of Production Systems, Global Busines	ss Press.
2] Alan Muhlemann, John Oakland, Keith Lockyer (1978), Production and Operations Ma	nagement,
Mac Milan, India, IV Edition.	
[3] Chary S N (2004), Production and Operations Management, Tata Mc Graw Hill III Edition	n.
[4] Chase, Jacobs and Aquilano (2005), Operations Management for Competitive advant	ages, Tata
5] Operations Management by William J. Stevenson, TMGH, 9th Edition.	□ 1
oj Operations Management by Lee Krajewski, Larry Kitzman, Manoj Malhotra, Pearson	zaucation,
8th Edition.	
7] Introduction to Materials Management, J.R. Tony Arnold, Stephen Chapman, Rar	nakrishna,
Pearson, 5th Edition.	

8] Operations Management by Elwood Buffa Published January 1st 1983 by John Wiley & Sons

Unit wise Measurable students Learning Outcomes:

1. To apply the Operations management Strategy Framework.

2. To design the different facility layout planning & MHS for new plant layout through new technologies.

3. To apply the systematic approach for Production Planning & Production Control.

4. To analyze and forecast the future demands in Operational Activity to overcome the operational losses.

5. To solve the EOQ models.

6. To apply the advance operation management tools.

Title of the Course: Industrial Product Design	L	Т	Р	Credit
Course Code: UMCH0624	3	1	-	4

Course Pre-Requisite:

Manufacturing Processes, Machine Drawing and Computer Aided Drafting, Manufacturing Engineering

Course Description: The course is focused on product development process through innovative ideas, screening of such ideas, feasibility study and building reliable product by gathering needs from the consumers. This course motivates and educates students to develop new products for betterment of society. This course is also useful for young entrepreneurs for converting their ideas into commercial product through systematic product development procedure.

Course Objectives:

- 1. To prepare students to create and execute design solutions for problems of form, usability, physical ergonomics, marketing, brand development, and sales of industrial products.
- 2. To educate students to conceptualize and evaluate ideas to create new products by combining art, science and technology.
- 3. To introduce students to product architecture and prototyping.
- 4. To estimate costing for a new product and study cost dynamics.
- 5. To aware students about impacts of developed products on society, environment and introduction to different fault finding techniques to improve reliability of the product.

Course Learning Outcomes:

CO	After the completion of the course the student should be	Bloom's Cognitive		
	able to	level	Descriptor	
CO1	Demonstrate knowledge of integration of design aspects	2	Understand	
	like product architecture, ergonomics, aesthetics, quality,			
	safety, reliability and product data management.			
CO2	Develop different alternative solutions for small sub	3	Apply	
	problems and select most appropriate solution from the set			
	of solutions.			
CO3	Estimate cost of new product by considering various	5, 2	Evaluate	
	components of the costs and Explain importance of		Understand	
	designing the product using design for X methodology.			
CO4	Apply aesthetic and ergonomics considerations while	3	Apply	
	designing controls, displays and user interfaces.			

CO-PO Mapping:

со	PO1	PO2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO 1	PSO2	PSO3
C01	3														
CO2	3														
CO3	3	3											3		2
CO4		2		2									2		2

Teacher Assessment:

Two components of In Semester Evaluation (ISE), One Mid Semester Examination (MSE) and one End Semester Examination (ESE) having 20%, 30% and 50% weights respectively.

Assessment	Marks
ISE 1	10
MSE	30
ISE 2	10
ESE	50

ISE 1 and ISE 2 are based on assignment/declared test/quiz/seminar/Group Discussions etc.

MSE: Assessment is based on 50% of course content (Normally first three modules)

ESE: Assessment is based on 100% course content with60-70% weightage for course content (normally last three modules) covered after MSE.

Course Contents:	
Unit 1: Introduction	4 Hrs.
Challenges of product development, Identify customer needs, Successful product	
development, Market Research, Survey.	
Unit 2: Product Development Process and Planning	9 Hrs.
Innovation and Creativity in Product Design, Product Planning Processes, Product	
specifications: Process of setting specifications. (Concept Generation–Selection–Testing).	
Reliability of Product:	
Fault Tree Analysis (FTA), Debugging Techniques, Failure Mode and Effect Analysis	
(FMEA), Different product reliability improvement techniques.	
Unit 3: Product Architecture	7 Hrs.
Product Architecture: Implication of architecture, Establishing the architecture, Related	
system level design issue, Product Data Management, Use of Computerized Data	
Management and Process, Industrial Design: Overview.	
Unit 4: Design for X Methodology	7 Hrs.
Rules, guidelines, and methodologies along the product life cycle phases: Development	
phase, Production phase, Use phase, Disposal phase, Concurrent Engineering.	
Product Costing:	
Different costs, Pre-requisites for cost accounting, Volume-Varity matrix and its impact	
on product costing, Value engineering.	
Unit 5: Aesthetics:	8 Hrs.
Aesthetic Considerations, Visual Effects of Form and Colour in Product Design.	
Ergonomics:	
Ergonomics and product design and automated systems, Anthropomorphic data and its	
applications in ergonomic design, Limitations of Anthropomorphic data, General	
approach to the Man-Machine Relationship - Workstation Design and environment	
(working position and posture).	
Control, Displays and User Interfaces:	
Configurations and sizes of various Control, Displays and User Interfaces, Design of	
instruments, controls, displays and user interfaces.	
Unit 6: Industrial Safety:	5 Hrs.
Personal protective Equipment and Environment Control Prevention and specific safety	
measures for manufacturing and processing industry and chemical industry.	
Introduction to Internet of Things (IoT) and Industry 4.0- Applications and	
Advantages	

Textbooks:

- 1. "Product Design and Development", Karl T. Ulrich, Steven G. Eppinger; Irwin Tata McGraw Hill, 3rd Edition.
- 2. "Product Design and Manufacturing", A.C. Chitale and R.C. Gupta, Prentice Hall of India, 3rd Edition.
- 3. "Product Design", Otto and Wood, Pearson education.
- 4. "Human Factor Engineering", L P Singh, Galgotia Publication Pvt.Ltd, 1st Edition.

References:

- 1. "Introduction to Ergonomics", R.C. Bridger, Tata McGraw Hill Publication.
- 2. "New Product Development", Tim Jones, Butterworth, Heinemann, Oxford, (1997).
- 3. "Industrial Design for Engineers", Mayall W.H, London, Hiffee books Ltd.

Title of	f the Course: Industrial Automation & Robotics	L	Т	Ρ	Credit					
Course	e Code: UMCH0625	3	1		4					
Course Pre-Requisite: Manufacturing Processes, Basic electronics & electrical, Basic										
Sciences										
Course	Course Description: This course gives knowledge about the automation and Robotics. It also									
describ	es the emerging trends in Automation and robotics									
Course	Objectives									
1.	To understand basic terminologies and concepts associat	ed with F	Robot	ics and						
2.	Automation									
3.	To study various Robotic sub-systems and Automation s	ystems								
4.	To study kinematics and dynamics to understand exact w	vorking p	attern	of rob	oots					
5.	To study the associated recent updates in Robotics and A	utomatio	n							
Course	e Learning Outcomes:									
CO	After the completion of the course the student	Bloom's	Cog	nitive						
	should be able to	level	I	Descrij	ptor					
CO1	Apply knowledge of automation tools and other									
	Equipments by taking into account the fundamental Cognitive									
	principles manufacturing processes and assembly	1		(Know	vledge)					
	components.	. (This reage)								

CO	After the completion of the course the student	Bloom's Co	gnitive
	should be able to	level	Descriptor
CO1	Apply knowledge of automation tools and other Equipments by taking into account the fundamental principles manufacturing processes and assembly components.	Ι	Cognitive (Knowledge)
CO2	To Apply knowledge and identify parameters of designing different grippers for various operations.	Ι	Cognitive (Knowledge)
CO3	To Acquire knowledge various drives	Ι	Cognitive (Knowledge)
CO4	To Analyzing the problem logically and demonstrate ,& apply knowledge for various kinematics behind robots	Π	Psychomotor (Skill)
CO5	To choose different programming methods for robots	II	Psychomotor (Skill)
CO6	To recognize AI scope in mechanical industries to automate the processes without human interference.	III	Affective (Attitude)

CO-PO Mapping:

CO	1	2	3	4	5	6	7	8	9	10	11	1 2	PSO1	PSO2	PSO3
CO1	2														
CO2	2			3									2	2	
CO3		3			3									2	
CO4		2			3								2		
CO5					2										
CO6					2										

Assessments :

Teacher Assessment:

Two components of In Semester Evaluation (ISE), One Mid Semester Examination (MSE) and one EndSemester Examination (ESE) having 20%, 30% and 50% weights respectively.

Assessment	Marks										
ISE 1	10										
MSE	30										
ISE 2	10										
ESE	50										
ISE 1 and ISE 2 are based on assignment/declared test/quiz/seminar/Group Discussion											
MSE: Assessment is based on 50% of course content (Normally first three modules)											
ESE: Assessment is based on 100% course content with60-70% weightage for course content											
(normally last three modules) covered after MSE.											
Course Contents:											
Unit 1:- Introduction		(06)Hrs.									
Introduction: - Basic Concepts such as Defini	tion, three laws, DOF, Elements of										
Robotic Systems i.e. Robot anatomy, Classifi	cation, Associated parameters i.e.										
resolution, accuracy, repeatability, dexterity, co	ompliance, RCC device, (04)										
Automation: - Concept, Need, Automation in	Production System, Principles and										
Strategies of Automation, Basic Elements of	an Automated System, Advanced										
Automation Functions, Levels of Automations.	.(02)										
Unit 2:- Robot Grippers: - Types of Gripper	s, Design aspect for gripper, Force	(06)Hrs.									
analysis for various basic gripper system. (02)											
Sensors: - Characteristics of sensing devices, S	selections of sensors, Classification										
and applications of sensors. Types of Sensors:-position sensor, velocity sensors,											
lactile sensor, force sensors. Acceleration se	nsor. Need for sensors and vision										
system in the working and control of a robot.(04)											
Unit 3:-Drives: - Types of Drives, Actuators and its selection while designing a											
Controllers Introduction to closed loop control	(02)										
Control Technologies in Automation: In	dustrial Control Systems Process										
Industries Verses Discrete Manufacturing Indu	utrias Continuous Varsas Discreta										
Control Computer Process and its Forms Co	ntrol System Components such as										
Sensors Actuators and others (04)	nuor bystem components such us										
Unit 4:- Kinematics :- Transformation matri	ces and their arithmetic link and	(07) Hrs									
ioint description Denavit -Hartenberg param	eters frame assignment to links	(07) 1115.									
direct kinematics, inverse kinematics (Theoreti	cal Treatment Only)										
Unit 5:-Machine Vision System: - Vision S	vstem Devices. Image acquisition.	(07) Hrs.									
Masking, Sampling and quantization. Imag	re Processing Techniques. Noise	(01)									
reduction methods, Edge detection, Segmentat	ion. (Theoretical Treatment Only)										
(03)											
Artificial Intelligence: - Introduction to Arti	ficial Intelligence, AI techniques,										
Need and application of AI. Other Topics in H	Robotics: - Socio-Economic aspect										
of robotisation. Economical aspects for robot design, Safety for robot and											
associated mass, New Trends & recent updates in robotics.(04)											
Unit 6:- Robot Programming: - Methods of robot programming, lead through (07) Hrs.											
programming, motion interpolation, branching capabilities, WAIT, SIGNAL and											
DELAY commands, subroutines, Programming Languages: Introduction to											
various types such as RAIL and VAL II etc, Features of each type and											
development of languages for recent robot systems.(03)											
Eyantra Robot programming :- Introduction to Eyantra Robot, Buzzer beep											
Program, motor interfacing ,and line following	robots.(04)										

Textbooks:

- 1. John J. Craig, Introduction to Robotics (Mechanics and Control), Pearson Education, ISBN 978-81-317-1836-0 3rd Edition, 2009
- 2. Mikell P. Groover Industrial Robotics: Technology, Programming and Applications, Tata McGraw – Hill International, 3rd reprint 2008.ISBN 13-978-0-07-026509-7
- Shimon Y. Nof , Handbook of Industrial Robotics , John Wiley Co, 2001.ISBN0-471-17783-0
- 4. Automation, Production Systems and Computer Integrated Manufacturing, M.P. Groover, Pearson Education. ISBN: 81-7808-511-9 2nd Edition (2004).
- 5. Industrial Automation: W.P. David, John Wiley and Sons.
- 6. Introduction to Robotics, Analysis, Control and Applications Niku, Saeed B., Willey Publication, ISBN 9788126533121, 2nd Edition.
- 7. Robotics-Control, Sensing, Vision and Intelligence Fu, K.S.; Gonzalez, R.C. and Lee, C.S.G., McGraw Hill Intl. Ed., ISBN:0-07-100421-1.

References:

- 1. Richard D. Klafter , Thomas A. Chemielewski, Michael Negin, Robotic Engineering : An Integrated Approach , Prentice Hall India, 2002.
- 2. Handbook of design, manufacturing & Automation: R.C. Dorf, John Wiley and Sons.
- 3. "Fundamentals of Robotics, Analysis and Control", Schilling, Robert J, Prentice Hall of India, ISBN: 81-203-1047-0, (2004).
- 4. "Introduction to Robotics Mechanics and Control" J. J. Craig, Pearson Education, 3rdE

5. "Applied Robotics Volume I and II", Edwin Wise, Cengage Learning.

Unit wise Measurable students Learning Outcomes:

UO1.1: Understand the problem and Apply knowledge of automation to simplify and automate the process

UO2.1 Understand and apply the basics fundamentals of gripper selection and design for process under consideration

UO 3.1 Understand and apply the basics fundamentals of drives for different application for different conditions.

UO4.1: Students can study the different design considerations of robot with respect to

different kinematic aspect and apply knowledge of D-H parameters.

UO5.1: Understand and apply the programming language.

UO6.1: Students can study of newer methods of robot programming.

Title of the Course: Applied Numerical Methods	L	Т	Р	Credit							
Course Code: UMCH0626	3	1	-	4							
Course Pre-Requisite:											
Engineering Mathematics-I, Engineering Mathematics-II, Engineering Mathematics-III											
Course Description:											
The course is aimed to provide elementary knowledge of numerical techniques and enable students to apply various tools and techniques mechanical engineering. The subject provides the students with a str numerical approximation strategies and a basic knowledge on the the numerical algorithms. The course starts with introduction of numerical applicability in mechanical engineering with an introduction to basic or MATLAB. It covers the concepts of solution techniques of linear and systems of equations. Differentiation and integration using num covered. Application of different initial value and boundary value prengineering using finite difference method is taught. An introduction	metho s to so rong b leory th cal me c comp and n lerical roblem n to so	ods and lve pr ackgro hat sup ethods putation on-lin metho ns in m	d stati oblem ound o pports and i on usi lear ec ods ar necha	istical ns in on s ts ng C++ quations e nical artial							

Course Objectives:

- 1. To explain basic concepts of numerical approximations.
- 2. To solve introductory engineering problems.
- 3. To describe functions and advantages of different numerical methods.
- 4. To correlate numerical results and approximations with actual field results.

Course Learning Outcomes:											
CO	After the completion of the course the student should be	Bloom's Cognitive									
	able to	level	Descriptor								
CO1	Explain procedure, advantages and applications of different numerical methods.	2	Understanding								
CO2	Interpret interpolation, statistical data and approximation for mechanical engineering problems.	2	Understanding								
CO3	Solve engineering problems by using appropriate numerical methods.	2	Understanding								
CO4	Develop algorithms for various numerical methods.	3	Applying								

CO-PO Mapping:

PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	

CO1	2	2		1						
CO2		3	1	1					1	
CO3		2	1	1					1	
CO4		1	2	1					1	

Teacher Assessment:

Two components of In Semester Evaluation (ISE), One Mid Semester Examination (MSE) and one End Semester Examination (ESE) having 20%, 30% and 50% weights respectively.

Assessment	Marks
ISE 1	10
MSE	30
ISE 2	10
ESE	50

ISE 1 and ISE 2 are based on assignment/declared test/quiz/seminar/Group Discussions etc. MSE: Assessment is based on 50% of course content (Normally first three modules) ESE: Assessment is based on 100% course content with60-70% weightage for course content (normally last three modules) covered after MSE.

Course Contents:

Unit 1:Roots of Equation Errors: Introduction, Types of errors, Rules for estimate errors, Error propagation, Error in the approximation of function Bracketing Method: Bisection Method, False position method Open method: Newton Raphson's, Multiple Roots, Iteration system of non- linear Equations, Secant method. Roots of polynomial: Muller's Method	7 Hrs.
Unit 2: Linear Algebraic Equation: Gauss Elimination Method- Naïve Gauss Elimination, Pitfalls of Elimination, Techniques of improving solutions, Gauss- Jordan method Matrix Invention- LU decomposition, Gauss Sedial, Jacobi Iteration methodProblems based on engineering application	5 Hrs.

Unit 3:A. Curve Fitting:	
 Least Square Regression – Linear regression, Polynomial Regression Interpolation – Newton's divided difference, Interpolating polynomial, Lagrange's interpolating polynomial B. Statistics: Mean and standard deviation, Addition and multiplication laws probabilities, Binomial, Poisson and normal distribution, Problems based on engineering application 	8 Hrs.
Unit 4: Numerical Differentiation and Integration	
Newton's cote's Integration of equation: Trapezoidal rule, Simpson's rules, Integration unequal segments. Integration of Equation: Romberg's Integration and Gauss Quadrature. Numerical differentiation, Differentiation formulae, Derivation of unequally spaced data, Forward difference, Central difference, Backward difference Problems based on engineering application.	7 Hrs.
Unit 5: Ordinary Differential Equation:	
Taylor's series method, Picard's Method, Runge-Kutta method, Euler's Method, Improved polygon method, System of equation Boundary value and Eigen value problem, Finite Difference Method, Eigen value	6 Hrs.
problem based on polynomial method, Power method Problems based on engineering application.	
Unit 6: Partial Differential Equation:	
Finite Difference – Elliptic equation, Laplace's equation, Liebmen's Method, Secondary variables, Boundary condition.	
Finite Difference- Parabolic Equation , Explicit Method- Bender- Schmidt method, Implicit method- Crank Nicolson Method Problems based on engineering	7 Hrs.
application. Introduction of MATLAB, Mechanical Engineering Problem solving approach by using MATLAB.	
Module wise Measurable Students Learning Outcomes :	
Obtain root of given function/polynomial using numerical methods. Solve linear simultaneous equations using numerical methods. Analyze the data and apply numerical methods to fit a curve on the data. Solve the complex differential and integral equations in mechanical engineering. Solve the ODE applicable for mechanical engineering using numerical methods. Solve the PDE applicable for mechanical engineering using numerical methods.	
Textbooks:	
 Dr. B. S.Grewal, "Numerical Methods", Khanna Publishers, New Delhi. E. Balguruswamy, "Numerical Methods", Tata Mcgraw Hill Publication Company. Steven C. Chapra, "<i>Numerical Methods for Engineers</i>", Tata McGraw Hill Public New Delhi "Numerical Methods" S Arumugam A Thangapandi Isaac and A Somasundaram Set 	y Ltd. ations,

4. "Numerical Methods", S.Arumugam, A. Thangapandi Isaac and A.Somasundaram, S Publications India Pvt.Ltd., Chennai.

References Books:

1. J.N. Kapoor, "Mathematical Modeling", New Age Mumbai, first Edition, 2005. Kreyszig, "Advanced Mathematics", LaurieRosatone, USA.

2. S.C. Chapra, "Applied Numerical Methods with MATLAB for Engineers and Scientists", Tata McGraw Hill Education Pvt. Ltd., New Delhi

3. Sigiresu S Rao, "Engineering Optimization", New Age International Publisher.

4. R. L. Burden and J. D. Faires, "Numerical Analysis Theory and Applications", Cengage Learning India Pvt. Ltd., New Delhi

TERM WORK:

Students are expected to solve at least two problems on each method by appropriate numerical method on each unit.

Students are expected to develop computer programs on each unit. ((Algorithm, Flow charts, Computer code, problem with analytical treatment)

Course Contents:

Tutorial No. 1:	01 Hrs.
Numerical treatment on Roots of equations by Bracketing method	
Tutorial No. 2:	01 Hrs.
Numerical treatment on Roots of equations by Open method	
Tutorial No. 3:	01 Hrs.
Numerical treatment on Linear Algebraic Equation	
Tutorial No. 4:	01 Hrs.
Numerical treatment on Curve Fitting.	
Tutorial No. 5:	01 Hrs.
Numerical treatment on interpolation, statistics & probability	
Tutorial No. 6:	01 Hrs.
Numerical treatment on Numerical Integration	
Tutorial No. 7:	01 Hrs.
Numerical treatment on Numerical Differentiation.	
Tutorial No. 8:	01 Hrs.
Numerical treatment on Ordinary Differential Equation	
Tutorial No. 9:	01 Hrs.
Numerical treatment on Boundary value and Eigen value problem	
Tutorial No. 10:	01 Hrs.
Numerical treatment on Partial Differential Equation	

Title of	f the Co	urse:]	Energ	y Cons	servati	ion an	d Man	agement	,	L	Т	Р	Credit	[
Course	e Code:	UMCH	H0671							3	1	-		4
Course	e Pre-R	Requisi	ite: B	asic 1	Mecha	nical	Engin	neering,	Applie	d T	herm	odynar	nics, E	ngineering
Therm	odynan	nics												
Course	e Descri	ption:	After	comp	letion	of the	course	e, studen	ts will h	nave	under	standin	g of im	portance of
energy	conserv	ation a	and ma	anagen	nent. S	tudent	s will g	get famil	iar with	the e	energy	y audit	procedu	re, the data
collecti	ion for th	ne audi	it, oppo	ortuniti	les for	energy	v conse	rvation, v	waste ree	cyclir	ng and	l energy	/ plannir	1g.
Course	e Object	ives:												
1.The t	penefits a	and dri	vers of	f an en	ergy a	udit.								
2.Have	knowle	dge of	the en	ergy au	udit of	electri	cal util	ities.						
3. Understand to plan and carry out an energy audit. 4 Assess the energy consumption of an organization														
4. Assess the energy consumption of an organization.														
5. Analyse the energy systems data of the organization to identify key trends or issues.														
6.To select energy efficient solutions.														
Course Learning Outcomes:														
CO	After	the co	mpleti	ion of	the co	urse th	ne stud	ent shou	ld be	_	Bloo	m's Co	gnitive	
	able t	0									level	Dese	criptor	
CO1	Explai	in the	e imp	ortanc	e of	energ	y con	servation	n and	its	II	Und	erstandi	ng
	manag	gement	•											
CO2	Explai	in use	e of	ren	ewable	e ene	rgy so	ources	in Ener	rgy	II	Und	erstandi	ng
	manag	gement	•											
CO3	Make	use of	ener	gy con	servati	ion tec	hnique	s in vari	ous sect	ors	III	App	lying	
	like do	omesti	c, Indu	stry ar	id com	mercia	ıl.							
CO4	Take a	a part i	n Ener	gy aud	liting a	nd ecc	nomic	analysis	•		IV	Ana	lyzing	
CO-PO)-PSO N	Mappi	ng:											
СО	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO	10	PSO1	PSO2	PSO3
CO1	3													
CO2	3													
CO3		2										2		
CO4			2									2		
Assess	ments :													
Teache	er Asses	sment	:											
Two co	omponer	nts of	In Sen	nester	Evalua	ation (ISE), C	One Mid	Semest	er Ex	kamin	ation (I	MSE) ar	nd one End
Semest	er Exam	inatio	n (ESE	l) havii	ng 20%	5, 30%	and 50)% weigl	nts respe	ctive	ly.			
Asses	sment						Μ	arks						
ISE 1							10)						
MSE							30)						
ISE 2							10)						
ESE							50)						
ISE 1 a	ind ISE 2	2 are b	ased or	n assig	nment	/declar	ed test/	/quiz/sen	ninar/Gr	oup I	Discus	ssions e	tc.	
MSE: A	Assessm	ent is t	based of	on 50%	of co	urse co	ntent (Normall	y first th	ree m	nodule	es)		
ESE: A	Assessme	ent is	based	on 10	0% cc	ourse c	ontent	with60-	70% we	ighta	ige fo	r cours	e conte	nt (normally
module	es) cover	ed afte	er MSE	Ξ.						-	-			
Course	e Conter	nts:												
Unit 1	l: Int	troduc	tion:	Introd	uction	, ener	gy pro	blems,	energy	use	trends	in 6	Hrs.	
develop	ping co	untries	s, pro	spects	of c	hanges	in e	energy s	upply,	strate	egies	for		
sustain	able dev	velopm	nent, fi	inite fo	ossil re	eserve,	Energ	y and e	nvironm	ent,	Need	for		
renewa	ble and	energy	efficie	ency, E	Energy	conse	rvation	principle	es					
Unit 2:	Ener	rgy ma	nagen	nent	07			• •				8	Hrs.	
Definit	ions and	l signi	ficance	e, Two	sides	of en	ergy m	nanagem	ent, Sec	tors of	of sur	oply		
side en	ergy ma	nagen	nent, C	bjecti	ves of	energy	y mana	gement.	Hierarc	hical	level	s of		
supply	side ene	ergy ma	anagen	nent, T	rade-c	off bety	veen er	nergy and	d enviro	nmen	it, Ene	ergy		

and economy, energy management and control system (EMC's or EMS) for demand	
side, Energy management in end user plant, Seven principles of energy management,	
Energy policy of supply organization and demand side organization for energy	
management, Organization of energy management, Training and human resource	
development, motivation.	
Unit 3: Energy Planning	6 Hrs.
Energy strategy, Energy policy and energy planning, Essential imperatives and steps	
in supply side energy planning, energy planning flow for supply side, Essential data	
for supply side energy planning, infrastructure planning, Transportation of energy,	
Per capita energy consumption, Essential imperatives and steps in user side energy	
planning, Energy policy of demand side organization (energy consumer).	
Unit 4: Energy Auditing: Elements and concepts, Types of energy audits,	6 Hrs.
methodology, Instruments used in energy auditing. Portable and On-line instruments	
Role of Non-Conventional Energy Sources in Energy Conservation. Need and. Qyoto	
Protocol, Carbon Credits and Clean Development Mechanism (CDM).	
Unit 5: Energy Conservation and Recycling	8 Hrs.
Introduction, Listing of energy conservation opportunities, Electrical ECOs,	
Thermodynamic ECOs, ECOs in chemical processing industries, ECOs in medium	
and small industries, ECOs in residential buildings, shopping complexes and in	
university campus, Human and animal bio-muscle energy, Waste management,	
Recycling of discarded materials and energy recycling. Waste recycling management	
Unit 6: Economic Analysis:	6 Hrs.
Simple Payback Period, Return on Investment, Dynamic value of money, Discount	
Rate Cash flows. Time value of money. Formulae relating present and future cash	
flows - single amount, uniform series.	
Costing of Utilities – specific costs of utilities like, all fuels, steam, compressed air.	
electricity, water etc.	
Introduction to Internet of Things (IoT). Applications & amp: Advantages. Industry	
4.0	
Textbooks:	
1) "Energy Technology", by S. Rao, Dr. B.B. Parulekar, Khanna publications, Delhi	
2) A.B. Gill, "Power Plant Performance". Butterworths, 1982	
3) "The Efficient use of Energy" Ed. I G C Dryden Butterworths London 1982	
4) Wood, A.J., Wollenberg, B.F., Power generation, Operations and control, John Wile	v. York.1984
	<i>j</i> , 1011,1701
References Books:	
1.P.H. Henderson: India - The energy Sector, Oxford University Press.	
2. Callaghan: Energy Conservation IGC Dryden, editor : The efficient use of energy (Br	utterworths.)
3.D.A. Ray: Industrial Energy conservation. Pergamon Press	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
4.W.C. Turner, editor: Energy Management handbook (Willey)	
5. Patrick Steven R., Patric Dale R., and Fordo Stephen : Energy conservation Guide be	ook.
The Fairmont Press Inc 7	, ,
6 F William Payne and Richard E. Thompson: Efficient Boiler Operation Source Book	c .
7. Albert Thumann: Plant Engineers and managers Guide to Energy conservation	
Unit wise Measurable students Learning Outcomes:	
1. Explain the importance of energy conservation and its management	
2. Explain use of renewable energy sources in Energy management	
3. Carry out Energy Audit of any organization.	
of our phones indicate of any organization.	

Title of the Course: Biomedical Engineering	L	Т	Р	Credit
Course Code: UMCH0672	3	1		4

Course Pre-Requisite:

This course requires the basic knowledge of the following:

- 1. Electronics Engineering concepts of circuit building
- 2. Machine Design
- 3. Anatomy and physiology awareness

Course Description:

In today's world of high-technology products, the most important requirements of dimensional and other accuracy controls are becoming very stringent as a very important aspect in achieving quality and reliability in the service of any product in dimensional control. Unless the manufactured parts are accurately measured, assurance of quality cannot be given. In this context, the course deals with the basic principles of dimensional measuring instruments and precision measurement techniques.

Course Objectives:

- 1. To understand the basic principle, working and design of various automated diagnostic equipments.
- 2. To develop skills enabling Biomedical Engineers to serve Hospitals, National and International Industries and Government Agencies.
- 3. To develop awareness in the field of Biomedical Engineering
- 4. To study various medical instrumentation systems, drug delivery systems and health management systems.

Course Learning Outcomes:

CO	After the completion of the course the student should be	Bloom'	s Cognitive
	able to	level	Descriptor
CO1	Describe the principles of electronics used in designing	Ι	Knowledge
	various diagnostic equipment.		
CO2	Describe health management systems	II	Comprehension
CO3	Identify different diagnostic equipments physically for	II	Comprehension
	their working principals and applications.		
CO4	Select proper machine for given application.	VI	Evaluation

CO-PO-PSO Mapping:

CO	PO1	PO2	PO3	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PSO1	PSO2	PSO3
CO1	2					2								
CO2												1		
CO3												2		
CO4													1	

Teacher Assessment:

(normally last three modules) covered after MSE.

Two components of In Semester Evaluation (ISE), One Mid Semester Examination (MSE) and one EndSemester Examination (ESE) having 20%, 30% and 50% weights respectively.

Assessment	Marks
ISE 1	10
MSE	30
ISE 2	10
ESE	50

ISE 1 and ISE 2 are based on assignment/declared test/quiz/seminar/Group Discussions etc. MSE: Assessment is based on 50% of course content (Normally first three modules) ESE: Assessment is based on 100% course content with60-70% weightage for course content

Course Contents:	
Unit 1: A perspective on Medical Instrumentation, Biomedical Instrumentation, Classification of Biomedical Instruments, Justification of biomedical instrumentation, Scope for Biomedical Engineers. Physiotherapy, Electrotherapy Equipments: Basic principle, working and technical specifications of Shortwave Diathermy, Ultrasonic therapy unit, Infrared and UV lamps, Nerve and Muscle Stimulator.	10 Hrs.
Unit 2: Basic Principal, Construction and operation, of i.BP Apparatus ii. Audiometers iii. Dialyser iv. Pacemaker v. Difibrillator vi. Phonocardiograph vii. Spirometer. Surgical Instruments: Surgical Diathermy machine, electrodes used with surgical diathermy, safety aspects in electronic surgical units, surgical diathermy analyzers.	08 Hrs.
Unit 3: Cardiac Pacemakers: Modes of operation, leads and electrodes. Power supply sources. External and Implantable Pacemaker, Performance aspects of Implantable Pacemaker.	08 Hrs.
Unit 4: Cardiac Defibrillators: DC defibrillator, Modes of operation and electrodes, Performance aspects of dc-defibrillator, defibrillator analyzers. Implantable defibrillator and defibrillator analyzer.	06 Hrs.
Unit 5: Hemodialysis Machine: Basic principle of Dialysis and its type. Different types of dialyzer membrane, Portable type. Various monitoring circuits.	03 Hrs.

Unit 6: Hospital equipment safety and organization. Electrical hazards of medical instruments, Devices to protect against electrical hazards, Diagnostic instruments: ultrasound, X-ray, CT scan, MRI, PET Techniques Laser Applications in Biomedical Engineering. Introduction to IoT and Industry 4.0 and its applications and advantages.	05 Hrs.
Textbooks: 1.R S. Khandpur 2014, Handbook of Biomedical Instrumentation, PH Pub 2.J G. Webster 2014, Medical Instrumentation, Application and Design, John Wiley 3. Carr –Brown ,Introduction to Biomedical Equipment Technology, PH Pub.	
 References: 1. J G. Webster , Encyclopedia of Medical Devices and Instrumentation:. Vol I- IV PH Pub 2. Various Instruments Manuals 3. Various internet resources. 	
Unit wise Measurable students Learning Outcomes:	
 Student should able to know basic principle, working and technical specification medical instruments. 	ns of various
2. Student should able to select proper instrument for measurement and also measurement.	o the safety
3. Student should able to know the working of Cardiac Pacemakers and performance.	calculate its
4. Student should able to know the working of Cardiac Defibrillators and its aspects.	performance
5. Student should able know basic principle of Dialysis and its type. Various monitor	ring circuits.
6Student should able to study Laser Applications in Biomedical Engineeri Applications, Laser delivery Systems and safety.	ing, medical

Title of the Course: Process Engineering (Audit Course)LTPC										Cr	redit				
Course	Code	: UMC	H661						2	-	-	-	0		
Course Pre-Requisite: Machine drawing, Manufacturing processes, Limits, fits and tolerances, Engine Metrology, Machine Tools.											eering				
Course	Descr	ription:	This co	ourse g	ives the	e proces	ss plannii	ng se	quence a	nd ho	w to cr	eate	any pa	art when	n design is
ready w	ready with available manufacturing resources, with given part accuracy requirements.														
Course	Course Objectives:														
1. To ui	nderst	and the	e funda	menta	ls of pr	ocess e	engineer	ing i	n a manı	ufactu	iring ir	ndus	stry		
2. To ui	nderst	and the	e inforr	nation	on dra	wing r	elated to) mar	iufactur	ing pr	ocess				
3. To se	elect th	ie state	d toler	ances of	on drav	wing ar	id select	best	suitable	e man	ufactu	ring	proce	esses.	
4. 10 St	uay th	ie reasi	bility o	f the co	ompon	ent.	·								
5. 10 Se		ie stan		oling f	or crea	tion of	part as j	per r	equirem	ent o	n arav	ving.			
Course	Learr	iing Ot	itcome	5:											
CO	Afte	r the co	mpleti	on of t	he com	rse the	student	shou	ld be ab	le F	Bloom'	s Co	onitive	<u>د</u>	
	to												or		
CO1	1 Select proper manufacturing process and machines for Remembering										pering				
001	generating required tolerances														
CO2	D2 Interpret the given part drawing II Understanding											anding			
CO3	3 Choose proper tooling's for production III Applying										<u>g</u>				
CO4	Inspect the feasibility of the component IV Analyzing										ng				
CO5	Explain process of industrial component with help of process V Evaluating									ating					
CO6	Estir	nate tł	ne cvcl	e time	s and	produc	tion rate	es fo	r differe	nt	VI		Crea	tino	
000	opera	ations in	the fo	rmulate	ed proce	ess plar	1. 1.	00 10			• 1		crea	ung.	
CO-PO	P-PSO	Mappi	ng:	PO3	PO4	PO5	PO6	P 07	POS	DOO	PO1		DSO1	PSO	DSO3
<u>C01</u>	3	102	105	105	104	105	100	10/	100	10)			2	1502	1505
CO2	5	3	3										5	3	
CO3	3	5	3											5	
CO4	0		0		3							:	3	3	
CO5						3							3	0	
CO6			3			0				3			3	3	
Assessr	nents	:					11								
Teache One En	r Asse d Seme	ester Ex	: xaminat	ion (ES	SE) hav	ing 100)% weigt	htage							
Assess	sment			(24			N SIGN	Mark	KS						
ESE							1	100							
ESE: A	ssessm	ent is b	ased or	n 100%	course	conten	it I								
Course	Conte	ents:													
Unit 1:	Int	roduct	ion:												7 Hrs.
Process	s plan	ning fi	unction	and	activiti	es-dra	wing int	terpr	etation,	mate	erial e	valu	ation	and	
process	s seleo	ction, s	selectio	on of 1	nachin	es and	l tooling	g, se	tting pr	ocess	para	mete	ers, w	ork-	
holding	g devic	es, sele	ecting o	quality	assura	ince me	ethods, c	costii	ng and d	ocum	entati	on, I	nputs	and	
outputs	s for p	rocess	planni	ng, Pos	ition o	f produ	uct and p	proce	ess engir	neerir	ıg dep	artn	ient in	n the	
organiz	zation,	functio	ons of p	oroduct	t and p	rocess	enginee	rs.							
Unit 2.															7Hrs.
Cint 2.														I	

2.1 Part Print Interpretation : Indentifying Originating process, major and minor operations,	
identifying useful supplementary information, material specification and treatments,	
interchangeability and standardization, identifying critical processing factors (4)	
2.2 Study of Machining Accuracies: Factors affecting accuracies, work piece control	
theories, product tolerances, process tolerances, tolerance stack -types and effects. (3)	
Unit 3:	8 Hrs.
3.1 Technical Feasibility Study: Raw material, basic originating process, accuracy level,	
processes required, machine tools and accessories required Manufacturing feasibility study	
with illustrations (4)	
3.2 Selection of Process : General guidelines for and factors in process selection, process	
selection method, process and operation sequencing – guidelines: Combining and eliminating	
operations, economic aspects of processing (A case should be discussed). (4)	
Unit 4:	08Hrs.
4.1 Selection of Equipment : Various sources of information, technical, economical and	
managerial considerations, selection criteria for GPMs, SPMs and CNCs for processing in job.	
hatch and mass mode (4)	
4.2 Selection of Tooling: Technical specifications of standard cutting tools and gauges	
required for various machining operations, selection criteria for cutting tools and gauges.	
study of special tools, gauges and work holding devices, selection of machining	
parameters.(4)	
Unit 5: Process Planning : Preparation of process sheet for machining of a component for	06 Hrs.
iob, batch and mass production using conventional and CNC machines. Selection of quality	00 11150
assurance method and tools in process gauging Process Picture sheet including process	
symbols Process sheet design	
Unit 6: Time Estimation : Calculation of standard time and production rates for various	04Hrs
operations by consideration of various allowances (Numerical exercises expected) Takt-time	0 11115
concent (2)	
Computer Aided Process planning - Advantages over manual process planning	
approaches for CAPP. Generative Process Planning Knowledge-based Process Planning	
Feature Recognition in Computer Aided Process Planning, recent trends (2)	
Textbooks:	
1. Eary D. F., Johnson G. E., —Process Engineering for manufacture Prentice Hall of India Pvt. Ltd.	
2. Naravana K. L., Kannaiah P., Vankata Reddy K., —Production Drawing, New age international P	ublishers.
3. Groover Mikell P., Automation, Production Systems, and Computer-Integrated Manufacturing, Th	ird Edition,
PHI Learning Private Limited.	,
References:	
1) Process Engineering for Manufacturing – Eary & Johnson (Prentice Hall)	
2) Process Planning: The Design/Manufacturing Interface, –Petert Scallan, (2003), (Buttreworth	n
Heinmann, Elsevier) ISBN: 0-7506-51-29-6	
3) Principles of Machine Tools- Sen, Bhattacharya	
4) Automation, Production Systems, and C.I.M. – Groover, M.P. 3/e, (PHI)	
5) Workshop Technology Vol. III – Chapman (ELBS)	
6) Manufacturing Technology: Principles for Optimisation – Daniel	
7) Mechanical Estimating and Costing – TTTI Chennai (TMH)	
8) Standard manuals of ISO, QS, TS etc.	
 8) Standard manuals of ISO, QS, TS etc. 9) Manufacturers' catalogues for cutting tools and inspection equipments 	
 8) Standard manuals of ISO, QS, TS etc. 9) Manufacturers' catalogues for cutting tools and inspection equipments 10) Product Design-Kevin Otto and Kristin Wood (Pearson) 	
 8) Standard manuals of ISO, QS, TS etc. 9) Manufacturers' catalogues for cutting tools and inspection equipments 10) Product Design-Kevin Otto and Kristin Wood (Pearson) 11) All About Machine Tools-Heinrich Gerling (New Age International) 	
 8) Standard manuals of ISO, QS, TS etc. 9) Manufacturers' catalogues for cutting tools and inspection equipments 10) Product Design-Kevin Otto and Kristin Wood (Pearson) 11) All About Machine Tools-Heinrich Gerling (New Age International) 12) Westerman Tables (Metals) (New Age International) 	
 8) Standard manuals of ISO, QS, TS etc. 9) Manufacturers' catalogues for cutting tools and inspection equipments 10) Product Design-Kevin Otto and Kristin Wood (Pearson) 11) All About Machine Tools-Heinrich Gerling (New Age International) 12) Westerman Tables (Metals) (New Age International) 	
 8) Standard manuals of ISO, QS, TS etc. 9) Manufacturers' catalogues for cutting tools and inspection equipments 10) Product Design-Kevin Otto and Kristin Wood (Pearson) 11) All About Machine Tools-Heinrich Gerling (New Age International) 12) Westerman Tables (Metals) (New Age International) 	
 8) Standard manuals of ISO, QS, TS etc. 9) Manufacturers' catalogues for cutting tools and inspection equipments 10) Product Design-Kevin Otto and Kristin Wood (Pearson) 11) All About Machine Tools-Heinrich Gerling (New Age International) 12) Westerman Tables (Metals) (New Age International) 	
- **1.** UO1.1: Apply knowledge of manufacturing processes and identify parameters of various processes.
- **2.** UO2.1 Apply knowledge of manufacturing processes carry out part print analysis of industrial component drawing
- **3.** UO 3.1 Students will able to do the technical feasibility study
- **4.** UO 4.1 Students will able to design of process sheet on GPM for batch production.
- **5.** UO5.1 Students will able to design of design process sheet for mass production.
- **6.** UO6.1: Students can compute time estimation for given industrial component

Title of	of the Course: Workshop Practice -IV L T P Credit									edit					
Course	e Code	: UMO	CH063	31						-	-	2		1	
Course Manufa	Pre-re acturin	quisite g Engi	e: Wor neerir	·kshop 1g.	Pract	ice-II]	I, Man	ufactu	iring F	rocess	ses,Ma	chine T	ools,		
Course	Descri	ption:	This c	ourse	is desig	gned to	o provi	de stuc	lents h	ands o	n demo	nstratio	ns on va	arious	
machine	es along	g with t	the ope	eration	s carrie	ed out	on the	same.	Also, i	t provi	des fun	dament	al		
informa	tion reg	garding	g gear 1	nanufa	cturing	g proce	esses.								
Course	e Obje	ctives	:												
1.To pe	rform v	arious	operat	ions of	n diffei	ent m	achine	tools.							
2.To pro	epare de	etailed	proces	s shee	ts for v	arious	operat	tions.							
3. To ui	nderstar	nd the o	concep	t of die	e threa	ding aı	nd tapp	oing.							
Course	e Learı	ning (Jutcor	nes:											
CO	After	the c	omple	etion (of the	cours	e the	stude	nt sho	uld be	e Blo	om's C	ognitiv	'e	
	able t	to	-								leve	el De	scriptor	C	
CO1	Expla	in vari	ous dri	lling, 1	milling	and d	ie threa	ading o	operati	ons.	2	Un	derstand	ling	
CO2	Expla	in the	machir	ning op	eration	ns like	grindi	ng, bro	aching	g, gear	2	Un	nderstanding		
	manuf	facturi	ng and	non-c	onvent	ional r	nachin	ing		-				_	
CO3	Prepa	re proc	ess sho	eet for	given	operati	ions				3	Ap	Applying		
CO4	Perfor	m diff	erent c	peration	ons like	e drilli	ng, int	ernal ta	aper tu	rning,	6	Cre	ating		
	millin	g, die 1	threadi	ng, tap	ping,e	tc.	-		-	-			-		
СО-РО) Map	ping:					-					-	-		
CO	PO1	PO2	PO3	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PSO1	PSO2	PSO3	
<u>CO1</u>	3											3			
C02	2									2		2		-	
CO4	3									2		3			

Assessments :

Teacher Assessment:

One component of In Semester Evaluation (ISE) and one End Semester Examination (ESE) having 50%, and 50% weights respectively.

Assessment	Marks
ISE	50
ESE	25

ISE : Assessment is based on 100% Lab work.

ESE: Assessment is based on Job performed and oral examination

Course Contents:

1. Introduction to generally used materials for machining , grades of 02 Hrs.

materials and demonstration of various machining operations on milling machines	
2. Decide sequence of operations to be performed for given component drawing and prepare process sheets with working drawings for all components.	02 Hrs
3. Performing drilling and boring operations on lathe machine.	02 Hrs
4. Performing internal taper turning operation on lathe machine.	02 Hrs
5. Performing any one of the following operation on milling machine: a. End milling b. Side milling c. Straddle milling	02 Hrs
6. a. Introduction to basic standards of Die threading and Tapping b. Demonstration of different tapping attachments and tapping calculations.	02 Hrs
7. Performing die threading and tapping operations.	02 Hrs
8.Demonstration of basic measuring instruments to carry out inspection of job and perform rework if required.	02 Hrs
9. Industrial Visit to study the following machining operations: a. Grinding b. Broaching c. Gear manufacturing d. Non conventional machining e. Special purpose machines	02 Hrs
10. Submission of : a. Industrial Visit Report b. Workshop Diary c. Process Sheets d. Job along with Internal Oral	02 Hrs
Textbooks:1. Workshop Technology Vol. I & II by Hajra Chaudhary, (Media Promoters & Pvt. Ltd.)2. Workshop Technology Vol. I , II and III by W.A.J. Chapman, (ELBS)3. A Course on Workshop Technology – Vol. 1 by B. S. Raghuvanshi; (Dhanpa 4. Textbook of Production Engineering by P.C.Sharma (S.Chand Publication)	Publishers at Rai & Co.)

References:

1]Workshop Technology Vol. III – Chapman (ELBS) 2]Workshop Technology Vol. II by Bawa H. S. (TMH)

Experiment wise Measurable students Learning Outcomes:

- 1. Understand material grades and various machining operations performed on milling machines.
- 2. Select sequence of operations as per drawing and prepare process sheets.
- 3. Perform drilling and boring operations on the lathe machine.
- 4. Perform internal taper turning operation on a lathe machine.
- 5. Perform various milling operations on the milling machine.
- 6. Understand basic standards of die threading and tapping operations and perform tapping calculations.
- 7. Perform die threading and tapping operations.
- 8. Make use of basic measuring instruments for inspection.
- 9. Understand grinding, broaching, gear manufacturing and non-conventional machining processes and SPMs.
- 10. Prepare a detailed visit report to interpret the operations and machines observed.

Title of the Course: Industrial Hydraulics and Pneumatics Lab	L	Т	P	Credit
Course Code: UMCH0632	-	-	2	1

Course Pre-Requisite: Fluid Mechanics

Course Description: This course aims to impart knowledge of fluid power systems such as hydraulics and pneumatics w.r.t. their components, circuits and their applications, design of system and maintenance and troubleshooting of the system.

Course Objectives:

1. Study of working principle of various components used in hydraulic and pneumatic systems.

2. Study of ISO/JIC symbols of fluid power systems.

3. Study of hydraulic and pneumatic circuits.

4. Design of hydraulic and pneumatic circuits for given application.

Cours	e Lea	arnin	g Ou	tcome	es:										
CO	Aft	er th	e con	ıpleti	on of	the c	course	e the	stude	nt sho	uld be	e Bl	oom'	s Cogn	itive
	abl	e to										lev	vel 🗄	Descrij	ptor
C01	Ex]	plain Iraulio	and c and	demo pneur	nstra matic	i te ba syste	sic st ms.	ructui	re and	l elem	ents o	f 2	2	Unders	tanding
CO2	Ex]	plain ious e	and eleme	dem nts of	o <mark>nstr</mark> hydr	ate c aulic	onstr and p	uctior neum	n and atic s	work ystem	ting of	f 2	2	Unders	tanding
CO3	Co circ	nstru cuits.	ct a	nd d	emon	strat	e hyd	drauli	c an	d pne	eumatio	° 3	3	App	lying
CO4	Des ind	Design the hydraulic or pneumatic system for given 6 Cre industrial application.												Crea	ating
CO-P	O Ma	appin	g:							-					
CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	P011	PO12	PSO	I PSO2	PSO3
CO1	2												2		2
CO2	2												2		2
CO3		2	3	_	_				3	_	-	3	3		3
CO4		2	3	3	2				3	3	3	3	3		3
One co having Asses ISE ISE ar Discus ESE: A Cours	ompo g 50% ssmer e base ssion/ Asses ce Con	nent (, and nt ed on Inter smen ntent	pract nal or s:	Semes weigl ical p ral etc ased o	ster E hts res erforn n ora	valua specti med/ l exar	tion (vely. Quiz/ ninati	ISE) a N 2 Mini on	and or <u>Iarks</u> 5 -Proje	ect ass	l Seme	Prese	Exam	ination	(ESE)
Exper Study	imen and I	t No. Demor	1: nstrat	ion of	flavo	uts of	hvdr	aulic	and p	neuma	tic svs	stem			02 Hrs.
Exper Study	imen of IS	t No. O/JIC	2: 2 Sym	bols f	for hy	draul	ic and	l pneu	imatic	c syste	ms.				02 Hrs.
Exper Study pneum	imen and I natic s	t No. Demo	3: nstrat	ion of	f diffe	erent t	types	of co	ntrol	valves	used i	n hyd	rauli	c and	02 Hrs.
Exper	imen	t No.	4:		• .		1 1		•						00 II
Prepar	ation	of to	llowi	ng cir	cuits	on hy	draul	ic cire	cuit tr	ainer;					02 Hrs.
a)	Bas	ic hy	drauli	c circ	uit to	obtai	n mot	tions	of line	ear and	d rotar	y actu	ators		

b) Speed control circuits								
c) Sequencing circuit								
d) Synchronization circuits								
e) Counterbalancing circuits								
Experiment No. 5:	02 Hrs.							
Preparation of at least two circuits on electro-hydraulics circuit trainer								
Experiment No. 6:	02 Hrs.							
Preparation of following circuits on pneumatic circuit trainer;								
a) Automatic reciprocating motion circuits								
b) Speed control circuits								
c) Sequencing circuits (travel dependent)								
d) Circuit involving use of shuttle valve (OR logic circuit)								
e) AND logic circuit								
Experiment No. 7:	02 Hrs.							
Circuit preparations (at least two) by using Fluid Simulation Software.								
Experiment No. 8:	04 Hrs.							
Design of hydraulic / pneumatic system and related components for any one of								
selected industrial/agriculture /any suitable application.								
Design report should include following points like load, pressure and flow								
calculations, sizing and selection of components, design constraints considerations,								
circuit preparation and determination of energy losses in system.								
Textbooks:								
1. "Oil hydraulics Systems", S. R. Mujumdar, Tata McGraw Hill Publication.								
2. "Pneumatic Systems", S. R. Mujumdar- Tata McGraw Hill Publication.								
3. "Industrial Fluid Power", D. S. Pawaskar, Nishant Prakashan.								
4. "Hydraulics and Pneumatics", Shaikh and Khan, R.K. Publication.								
5. "Fluid Power with Application", Esposito, Pearson Education, 7th Edition.								
6. "Basic Hydraulic – Festo Manual"								
7. "Basic Pneumatic – Festo Manual"								
8. "Industrial Fluid Power", S.S. Kuber, Nirali Prakashan, 3rd Edition.								
9. "Hydraulics and Pnuematics", Dr. Anand Bewoor, Late S.K. Ponde, Nirali Prakasha	n.							
References:								
1. "Hydraulic and Pneumatic", H.L. Stewart, Industrial Press.								
2. "Industrial Hydraulic", J. J. Pipenger, Tata McGraw Hill.								
3. "Power Hydraulics", Goodwin 1st Edition.	TT 11 C							
4. "Introduction to Hydraulic and Pneumatics", S. Ilango and V Soundararajan, Prenti-	ce Hall of							
1101a, 210 Edition. 5 "Pneumatic Control" Joii P. Wiley 1st Edition								
6 "Fluid Power" Jagadeesha T Wiley Publications								
7. Eaton (Vickers) Manual.								
8. Product Manuals and books from Vickers/ Eaton, FESTO, SMC pneumatics.								
Experiment wise Measurable students Learning Outcomes:								
1. Explain and demonstrate the structure and layouts of hydraulic and p	oneumatic							
systems.								
2. Make use of ISO symbols of fluid power systems to represent the system.								
3. Explain and demonstrate construction and working of various types of control value	ves used in							
hydraulic and pneumatic system.								
4. Construct and demonstrate hydraulic circuits on circuit trainer.								
5. Construct and demonstrate electro- hydraulic circuits on circuit trainer.								
6. Construct and demonstrate pneumatic circuits on circuit trainer.								
7. Make use of fluid simulation software.								
8. Design the hydraulic or pneumatic system for the given application.								

Title o	f the Course: I.C. Engines Lab	L	Т	Р	Credit					
Course	e Code: UMCH0634	-	-	2	1					
Course	Pre-Requisite: Applied Thermodynamic, Basic Mechanic	al Engir	eering, H	Heat M	lass					
Transfe	r.	U	Ċ,							
Course	Description:									
This convarious emissio operatir	urse deals with demonstration of different engine compone experiments on engine performance in terms of power, end ns, its relation to internal processes like combustion and ga ng conditions.	nts and s ergy utili is exchar	systems a zation ar nge at van	nd co id exh ying e	iduct of aust ingine					
1. To de 2. To tra real life	e Objectives: emonstrate the basic engine components and systems. ain the students to measure different engine performances a problems.	and apply	y the kno	wledg	e to solve					
Course										
CO	After the completion of the course the student she	ould be	Bloor	n's C	ognitive					
	able to level Descriptor									
CO1	Explain fundamentals of I. C. Engine		II	Unc	lerstanding					
CO2	Classify and demonstrate different I. C. Engine system.		II	Unc	lerstanding					
CO3	Measure the performance parameters f I. C. Engine.		III	App	lying					
CO4	Analyze the performance of I. C. Engine		III	App	olying					

CO-PO Mapping:

CO	PO1	PO2	PO3	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PSO1	PSO2	PSO3
CO1	3											2		
CO2	3													
CO3		3												
CO4		3											2	

Assessments :

Teacher Assessment:

One component of In Semester Evaluation (ISE) and one End Semester Examination (ESE) having 50%, and 50% weights respectively.

Assessment	Marks
ISE	50
ESE	50

ISE are based on practical performed/ Quiz/ Mini-Project assigned/ Presentation/ Group Discussion/ Internal oral etc.

ESE: Assessment is based on oral examination

Course Contents:	
Experiment No. 1:	2 Hrs.
Constructional detail of I.C. engines, dismantling and assembly.	
Experiment No. 2:	2 Hrs.
Study and Demonstration of Engine systems: Air intake, Exhaust, Cooling,	
Lubrication systems.	
Experiment No. 3:	2 Hrs.
Study and Demonstration of carburetors and petrol injection system.	
Experiment No. 4:	2 Hrs.
Study and Demonstration of Ignition system and starting system.	
Experiment No. 5:	2 Hrs.
Study and Demonstration of fuel supply system of Diesel Engine.	
Experiment No. 6:	2 Hrs.
Heat Balance sheet on Petrol/Diesel engine.	
Experiment No. 7:	2 Hrs.
Morse test on Petrol/Diesel engine.	
Experiment No. 8:	2 Hrs.
Variable speed test on Petrol/Diesel engine.	
Experiment No. 9:	2 Hrs.
Test on computerized Variable compression Ratio Engine.	
Experiment No. 10:	2 Hrs.
Visit to engine manufacturing company	

Textbooks:

- 1. "Internal Combustion Engines" Mathur and Sharma, Dhanpat Rai Publication, Delhi.
- Internal Combustion Engines", V. Ganesan, Tata McGraw Hill Publication.
 Internal Combustion Engines", Domkundwar, Dhanpat Rai Publication.

References:

- 1] "Internal Combustion Engines", J. B. Heywood, Tata McGraw Hill Publication .
- 2] "Internal Combustion Engines", Maleev, CBS Publication and Distributors.
- 3]"Internal Combustion Engines", Gills and Smith, Oxford and IBH Publishing Company

Experiment wise Measurable students Learning Outcomes:

- 1. Identify different components of I. C. Engines.
- 2. Demonstrate and explain different engine systems.
- 3. Explain different components and types of carburetors and petrol injection system.
- 4. Explain different ignition system and starting system of petrol engine.
- 5. Demonstrate different injection system and fuel injection pump.
- 6. Demonstrate performance parameters and prepare heat balance sheet of Petro/ Diesel engine.
- 7. Determine mechanical efficiency of Petrol/Diesel engine.
- 8. Understand load and speed characteristics of Petrol/Diesel engine.
- 9. Understand effect of compression ratio on performance of engine.
- 10. Demonstrate engine components, assembly and testing.

Title of	f the Course: Machine Design Lab	L	Т	Р	Credit							
Course	e Code:UMCH0635	-	-	2	1							
Course	Pre-Requisite:											
Theory	of Machine Design											
Course	Description:											
In macl	nine design laboratory students will learn	to apply	the Know	vledge of	design of transmission							
elements. Students will learn to design a gear box upto two stage.												
Course	Objectives.											
	arn use of manufacturers. Catalogue											
1.10 lea	and use of manufacturers, Catalogue	lomonte										
	stand the design procedures of transmitting e	lements										
Course	e Learning Outcomes:											
CO	After the completion of the course the	student	should b	e Bloor	n's Cognitive							
	able to			level	Descriptor							
CO1	Select rolling element for a particular an	plication	from	II	Remembering							
	standard catalogue											
CO2	Develop assembly and production drawi	ngs		III	Applying							
CO3	Design transmission elements and mech	anical sys	stems	V	Creating							
	subjected to static and variable loading											
	· 0				1							

CO-PO Mapping:

со	PO1	PO2	PO3	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PSO1	PSO2	PSO3
CO1	CO1	3	-	-	-	-	-	-	-	-		-	1	-
CO2	CO2	2	2	1	1	-	-		-	-	-	-	1	-
CO3	CO3	2	2	1	1	-	-	-	-	-	-	-	1	-

Assessments :

Teacher Assessment:

One component of In Semester Evaluation (ISE) and one End Semester Examination (ESE) having 50%, and 50% weights respectively.

Assessment	Marks
ISE	50
ESE	50

ISE are based on practical performed/ Quiz/ Mini-Project assigned/ Presentation/ Group Discussion/ Internal oral etc.

ESE: Assessment is based on oral examination

Course Contents:				
Experiment No. 1:				
Problems based on Design for Fluctuating Loads.	02 Hrs.			
Experiment No. 2:				
Study of Ball bearing mountings and its selection from standard manufacturer's catalogue and preloading of bearings, Mounting and dismounting procedures of rolling contact bearing and false diagnosis	02 Hrs.			
Experiment No. 3:				
A detail case study of a product analyzing the aesthetics and ergonomic considerations	02 Hrs.			
Experiment No. 4:				
Problems on pressure vessel design	02 Hrs.			
Experiment No. 5: Project Work 1- A detail design report and A2 Size sheet containing working drawing of details and assembly of a gear box (i) Spur gear/ Helical gear.	04 Hrs.			
Experiment No. 6:				
Project Work 2- A detail design report and A2 Size sheet containing working drawing of details and assembly of a gear box (i) Bevel/Worm gear.	04 Hrs.			
Textbooks: 1. Bhandari V. B." Design of Machine Elements, Tata Mcgraw Hill New edition				
References: 1] Design Data Handbook" – P.S.G. College of Technology, Coimbatore				
Experiment wise Measurable students Learning Outcomes:				
 Student should be able to design mechanical components subjected against fluctuating load Student should be able to select and recommend suitable bearing for particular application Student should be able to understand principles of aesthetics and ergonomics Student should be able to design pressure vessels as per IS standard. 				

5 Student should be able to design spur and helical gear

6 Student should be able to design bevel and worm gear.

Title of the Course: Industrial Training and Mini project	Т	Р	Credit		
Course Code UMCH0641	-	2	1		
Course Pre-Requisite: Fundamentals of Design Thermal & Manufacturing Processes					
Course Description:			-		
Industrial training and mini project aims to give exposure to the student	s to practi	cal know	ledge and		
real life problems	o to praeta		10080 0110		
F					
Course Objectives:					
1. To understand the working of industry					
2. To apply the theoretical knowledge to real life problems					
3. To learn to prepare and present the report					
Course Learning Outcomes:					
			·		
CO After the completion of the course the student should be	Bloc	Bloom's Cognitive			
able to	leve	I Desci	riptor		
Relate theoretical concepts with industrial practices through					
CO1 practical exposure.	11	Appl	У		
	1				
CO2 Develop communication skill and corporate cultural attributes	by III	Appl	У		
interacting with industrial persons.		0			
CO3 Organize the information in the prescribed format.	III	Orga	nization		
		(Alle	cuve)		
CO DO Maneiras					
CO-PO Mapping:					

СО	PO1	PO2	PO3	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PSO1	PSO2	PSO3
CO1	3													2
CO2	3								3	3	3			2
CO3	2								3	3	3			2

Assessments :

Teacher Assessment:

One component of In Semester Evaluation (ISE) 100% weight

Assessment	Marks
ISE	50

ISE are based on practical performed/ Quiz/ Mini-Project assigned/ Presentation/ Group Discussion/ Internal oral etc.

Course Contents:

A. Industrial Training:

The students have to undergo an industrial training of minimum two weeks in an industry preferably dealing with Mechanical engineering during the semester break after fifth semester and complete within 15 calendar days before the start of sixth semester. The students have to submit a report of the training undergone and present the contents of the report before the evaluation committee constituted by the

 department. i) Students are expected to learn the organization structure, working of different Departments, various systems incorporated in the organisation. ii) Students are expected to work upon a project work or case study. The training report should contain the analysis of case study or project work undertaken iii)Report is based on compilation of work carried out related to facility and layout Planning, Process Engineering, Process capability evaluation, Industrial automation or machinery modification as identified iv) The students shall report the status of training and will be assessed by faculty as per the guide who will be allocated for their miniproject group. 	
B. Miniproject : Minimum 4 to maximum 5 students in one group are allowed. Maximum two groups shall work under one faculty member. Group of one student is not allowed under any circumstances. In case of two group allotment, a work load of 2 hours shall be given and in case of one group allotment, a work load of 1 hour shall be given. Project work shall be based on any of the following:	
 Students can preferably identify a problem during their industrial training. Fabrication of product/ testing setup of an experimentation unit/ apparatus/ small equipment, in a group. Experimental verification of principles used in Mechanical Engineering Applications. Critical analysis of any design or process for optimizing the same. Software development for particular applications. The subject content of the mini project shall be from emerging/ thrust areas, topics of current relevance. The completion of work, the submission of the report and assessment should be done at the end of Part-II (Second Semester). Training and mini project diary shall be maintained by each group. Students shall be evaluated for the Industrial training and Mini project at the end of VI th semester. Report Format: Training and report should be of 15 to 20 pages (typed on A4 size sheets). For standardization of the project reports the following format should be strictly followed. Page Size: Trimmed A4 Top Margin: 1.00 Inch Bottom Margin: 1.3 Inches Right Margin: 1.0 Inch Para Text: Times New Roman 12 Point. Font Line Spacing: 1.5 Lines Page Numbers: Right Aligned at Footer. Font 12 Point. Times New 	02 hrs /week
9. Headings: Times New Roman, 14 Point, Bold Face10. Certificate: All students should attach standard format of Certificate as	

described by the department. Certificate should be awarded to batch and not	
to individual student.	
Certificate should have signatures of Guide, Head of Department and	
Principal/Director	
11. Index of Report:	
a. Title Sheet	
b. Certificate	
c. Acknowledgement	
d. Table of Contents.	
e. List of Figures	
f. List of Tables	
12. References: References should have the following format	
For Books: "Title of Book", Authors, Publisher, Edition	